• Previous Article
    Human resources optimization with MARS and ANN: Innovation geolocation model for generation Z
  • JIMO Home
  • This Issue
  • Next Article
    Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs
doi: 10.3934/jimo.2021019
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs

1. 

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. 

Department of Information Technology, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou 310053, China

*Corresponding author

Received  May 2020 Revised  December 2020 Early access January 2021

Fund Project: This work was supported by the Natural Science Foundation of China (11401533), the Zhejiang Provincial Natural Science Foundation of China (LY18A010030), the Scientific Research Fund of Zhejiang Provincial Education Department (19060042-F) and the Science Foundation of Zhejiang Sci-Tech University (19062150-Y)

This paper is concerned with a DC composite programs with infinite DC inequalities constraints. Without any topological assumptions and generalized increasing property, we first construct some new regularity conditions by virtue of the epigraph technique. Then we give some complete characterizations of the (stable) Fenchel-Lagrange duality and the (stable) Farkas-type assertions. As applications, corresponding assertions for the DC programs with infinite inequality constraints and the conic programs with DC composite function are also given.

Citation: Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021019
References:
[1]

R. I. BoţS.-M. Grad and G. Wanka, A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces, Mathematische Nachrichten, 281 (2008), 1088-1107.  doi: 10.1002/mana.200510662.  Google Scholar

[2]

R. I. BoţS.-M. Grad and G. Wanka, Generalized Moreau-Rockafellar results for composed convex functions, Optimization, 58 (2009), 917-933.  doi: 10.1080/02331930902945082.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, Journal of Mathematical Analysis and Applications, 337 (2008), 1315-1325.  doi: 10.1016/j.jmaa.2007.04.071.  Google Scholar

[4]

R. I. BoţI. B. Hodrea and G. Wanka, Some new Farkas-type results for inequality system with DC functions, Journal of Global Optimization, 39 (2007), 595-608.  doi: 10.1007/s10898-007-9159-8.  Google Scholar

[5]

N. DinhM. A. GobernaM. A. López and T. Q. Song, New Farkas-type constraint qualifications in convex infinite programming, ESAIM: Control Optimisation and Calculus of Variations, 13 (2007), 580-597.  doi: 10.1051/cocv:2007027.  Google Scholar

[6]

N. DinhB. S. Mordukhovich and T. T. A. Nghia, Qualification and optimality conditions for DC programs with infinite constraints, Acta Mathematica Vietnamica, 34 (2009), 125-155.   Google Scholar

[7]

D. H. Fang, Some relationships among the constraint qualifications for Lagrangian dualities in DC infinite optimization problems, Journal of Inequalities and Applications, 2015 (2015), 41-55.  doi: 10.1186/s13660-015-0561-3.  Google Scholar

[8]

D. H. Fang and X. Gong, Extended Farkas lemma and strong duality for composite optimization problems with DC functions, Optimization, 66 (2017), 179-196.  doi: 10.1080/02331934.2016.1266628.  Google Scholar

[9]

D. H. FangG. M. LeeC. Li and J. C. Yao, Extended Farkas's lemma and strong Lagrange dualities for DC infinite programming, Journal of Nonlinear and Convex Analysis, 14 (2013), 747-767.   Google Scholar

[10]

D. H. FangC. Li and K. F. Ng, Constraint qualifications for extended Farkas' lemmas and Lagrangian dualities in convex infinite programming, SIAM Journal on Optimization, 20 (2009), 1311-1332.  doi: 10.1137/080739124.  Google Scholar

[11]

D. H. FangM. D. Wang and X. P. Zhao, The strong duality for DC optimization problems with composite convex functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1337-1352.   Google Scholar

[12]

M. A. GobernaV. Jeyakumar and M. A. López, Necessary and sufficient conditions for solvability of systems of infinite convex inequalities, Nonlinear Analysis, 68 (2008), 1184-1194.  doi: 10.1016/j.na.2006.12.014.  Google Scholar

[13]

M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.  Google Scholar

[14]

V. JeyakumarA. RubinovB. M. Glover and Y. Ishizuka, Inequality systems and global optimization, Journal of Mathematical Analysis and Applications, 202 (1996), 900-919.  doi: 10.1006/jmaa.1996.0353.  Google Scholar

[15]

C. LiD. H. FangG. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM Journal on Optimization, 20 (2009), 1032-1051.  doi: 10.1137/080734352.  Google Scholar

[16]

C. Li and K. F. Ng, On constrint qualification for infinite system of convex inequalities in a Banach space, SIAM Journal on Optimization, 15 (2005), 488-512.  doi: 10.1137/S1052623403434693.  Google Scholar

[17]

C. LiK. F. Ng and T. K. Pong, Constrint qualifications for convex inequality systems with applications in constrained optimization, SIAM Journal on Optimization, 19 (2008), 163-187.  doi: 10.1137/060676982.  Google Scholar

[18]

G. LiX. Q. Yang and Y. Y. Zhou, Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces, Journal of Industrial and Management Optimization, 9 (2013), 671-687.  doi: 10.3934/jimo.2013.9.669.  Google Scholar

[19]

G. LiL. P. Zhang and Z. Liu, The stable duality of DC programs for composite convex functions, Journal of Industrial and Management Optimization, 13 (2017), 63-79.  doi: 10.3934/jimo.2016004.  Google Scholar

[20]

W. LiC. Nahak and I. Singer, Constrint qualifications for semi-infinite systems of convex inequalities, SIAM Journal on Optimization, 11 (2000), 31-52.  doi: 10.1137/S1052623499355247.  Google Scholar

[21]

J.-E. Martínez-Legaz and M. Volle, Duality in D.C. programming: The case of several D.C. constraints, Journal of Mathematical Analysis and Applications, 237 (1999), 657-671.  doi: 10.1006/jmaa.1999.6496.  Google Scholar

[22]

X.-K. Sun, Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results for DC infinite programming, Journal of Mathematical Analysis and Applications, 414 (2014), 590-611.  doi: 10.1016/j.jmaa.2014.01.033.  Google Scholar

[23]

X.-K. Sun and H.-Y. Fu, A note on optimality conditions for DC programs involving composite functions, Abstract and Applied Analysis, 2014 (2014), 203467, 6 pp. doi: 10.1155/2014/203467.  Google Scholar

[24]

X.-K. Sun, H.-Y. Fu and J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, Mathematics, 7 (2019). doi: 10.3390/math7010012.  Google Scholar

[25]

X.-K. SunX.-L. Guo and Y. Zhang, Fenchel-Lagrange duality for DC programs with composite functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1607-1618.   Google Scholar

[26]

X.-K. SunS.-J. Li and D. Zhao, Duality and Farkas-type results for DC infinite programming with inequality constraints, Taiwanese Journal of Mathematics, 17 (2013), 1227-1244.  doi: 10.11650/tjm.17.2013.2675.  Google Scholar

[27]

X.-K. SunX.-J. Long and J. Zeng, Constraint qualifications characterizing Fenchel duality in composed convex optimization, Journal of Nonlinear Convex Analysis, 17 (2016), 325-347.   Google Scholar

[28]

C. Zǎlinescu, Convex Analysis in General Vector Space, World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.  Google Scholar

show all references

References:
[1]

R. I. BoţS.-M. Grad and G. Wanka, A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces, Mathematische Nachrichten, 281 (2008), 1088-1107.  doi: 10.1002/mana.200510662.  Google Scholar

[2]

R. I. BoţS.-M. Grad and G. Wanka, Generalized Moreau-Rockafellar results for composed convex functions, Optimization, 58 (2009), 917-933.  doi: 10.1080/02331930902945082.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, Journal of Mathematical Analysis and Applications, 337 (2008), 1315-1325.  doi: 10.1016/j.jmaa.2007.04.071.  Google Scholar

[4]

R. I. BoţI. B. Hodrea and G. Wanka, Some new Farkas-type results for inequality system with DC functions, Journal of Global Optimization, 39 (2007), 595-608.  doi: 10.1007/s10898-007-9159-8.  Google Scholar

[5]

N. DinhM. A. GobernaM. A. López and T. Q. Song, New Farkas-type constraint qualifications in convex infinite programming, ESAIM: Control Optimisation and Calculus of Variations, 13 (2007), 580-597.  doi: 10.1051/cocv:2007027.  Google Scholar

[6]

N. DinhB. S. Mordukhovich and T. T. A. Nghia, Qualification and optimality conditions for DC programs with infinite constraints, Acta Mathematica Vietnamica, 34 (2009), 125-155.   Google Scholar

[7]

D. H. Fang, Some relationships among the constraint qualifications for Lagrangian dualities in DC infinite optimization problems, Journal of Inequalities and Applications, 2015 (2015), 41-55.  doi: 10.1186/s13660-015-0561-3.  Google Scholar

[8]

D. H. Fang and X. Gong, Extended Farkas lemma and strong duality for composite optimization problems with DC functions, Optimization, 66 (2017), 179-196.  doi: 10.1080/02331934.2016.1266628.  Google Scholar

[9]

D. H. FangG. M. LeeC. Li and J. C. Yao, Extended Farkas's lemma and strong Lagrange dualities for DC infinite programming, Journal of Nonlinear and Convex Analysis, 14 (2013), 747-767.   Google Scholar

[10]

D. H. FangC. Li and K. F. Ng, Constraint qualifications for extended Farkas' lemmas and Lagrangian dualities in convex infinite programming, SIAM Journal on Optimization, 20 (2009), 1311-1332.  doi: 10.1137/080739124.  Google Scholar

[11]

D. H. FangM. D. Wang and X. P. Zhao, The strong duality for DC optimization problems with composite convex functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1337-1352.   Google Scholar

[12]

M. A. GobernaV. Jeyakumar and M. A. López, Necessary and sufficient conditions for solvability of systems of infinite convex inequalities, Nonlinear Analysis, 68 (2008), 1184-1194.  doi: 10.1016/j.na.2006.12.014.  Google Scholar

[13]

M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.  Google Scholar

[14]

V. JeyakumarA. RubinovB. M. Glover and Y. Ishizuka, Inequality systems and global optimization, Journal of Mathematical Analysis and Applications, 202 (1996), 900-919.  doi: 10.1006/jmaa.1996.0353.  Google Scholar

[15]

C. LiD. H. FangG. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM Journal on Optimization, 20 (2009), 1032-1051.  doi: 10.1137/080734352.  Google Scholar

[16]

C. Li and K. F. Ng, On constrint qualification for infinite system of convex inequalities in a Banach space, SIAM Journal on Optimization, 15 (2005), 488-512.  doi: 10.1137/S1052623403434693.  Google Scholar

[17]

C. LiK. F. Ng and T. K. Pong, Constrint qualifications for convex inequality systems with applications in constrained optimization, SIAM Journal on Optimization, 19 (2008), 163-187.  doi: 10.1137/060676982.  Google Scholar

[18]

G. LiX. Q. Yang and Y. Y. Zhou, Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces, Journal of Industrial and Management Optimization, 9 (2013), 671-687.  doi: 10.3934/jimo.2013.9.669.  Google Scholar

[19]

G. LiL. P. Zhang and Z. Liu, The stable duality of DC programs for composite convex functions, Journal of Industrial and Management Optimization, 13 (2017), 63-79.  doi: 10.3934/jimo.2016004.  Google Scholar

[20]

W. LiC. Nahak and I. Singer, Constrint qualifications for semi-infinite systems of convex inequalities, SIAM Journal on Optimization, 11 (2000), 31-52.  doi: 10.1137/S1052623499355247.  Google Scholar

[21]

J.-E. Martínez-Legaz and M. Volle, Duality in D.C. programming: The case of several D.C. constraints, Journal of Mathematical Analysis and Applications, 237 (1999), 657-671.  doi: 10.1006/jmaa.1999.6496.  Google Scholar

[22]

X.-K. Sun, Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results for DC infinite programming, Journal of Mathematical Analysis and Applications, 414 (2014), 590-611.  doi: 10.1016/j.jmaa.2014.01.033.  Google Scholar

[23]

X.-K. Sun and H.-Y. Fu, A note on optimality conditions for DC programs involving composite functions, Abstract and Applied Analysis, 2014 (2014), 203467, 6 pp. doi: 10.1155/2014/203467.  Google Scholar

[24]

X.-K. Sun, H.-Y. Fu and J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, Mathematics, 7 (2019). doi: 10.3390/math7010012.  Google Scholar

[25]

X.-K. SunX.-L. Guo and Y. Zhang, Fenchel-Lagrange duality for DC programs with composite functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1607-1618.   Google Scholar

[26]

X.-K. SunS.-J. Li and D. Zhao, Duality and Farkas-type results for DC infinite programming with inequality constraints, Taiwanese Journal of Mathematics, 17 (2013), 1227-1244.  doi: 10.11650/tjm.17.2013.2675.  Google Scholar

[27]

X.-K. SunX.-J. Long and J. Zeng, Constraint qualifications characterizing Fenchel duality in composed convex optimization, Journal of Nonlinear Convex Analysis, 17 (2016), 325-347.   Google Scholar

[28]

C. Zǎlinescu, Convex Analysis in General Vector Space, World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.  Google Scholar

[1]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[2]

Gang Li, Xiaoqi Yang, Yuying Zhou. Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces. Journal of Industrial & Management Optimization, 2013, 9 (3) : 671-687. doi: 10.3934/jimo.2013.9.671

[3]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[4]

Xinmin Yang, Jin Yang, Heung Wing Joseph Lee. Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 525-530. doi: 10.3934/jimo.2013.9.525

[5]

Alberto Farina, Miguel Angel Navarro. Some Liouville-type results for stable solutions involving the mean curvature operator: The radial case. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 1233-1256. doi: 10.3934/dcds.2020076

[6]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[7]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial & Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[8]

Xavier Cabré. A new proof of the boundedness results for stable solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7249-7264. doi: 10.3934/dcds.2019302

[9]

Fangshu Wan. Bôcher-type results for the fourth and higher order equations on singular manifolds with conical metrics. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2919-2948. doi: 10.3934/cpaa.2020128

[10]

Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial & Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881

[11]

Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020

[12]

Regina S. Burachik, Xiaoqi Yang. Asymptotic strong duality. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 539-548. doi: 10.3934/naco.2011.1.539

[13]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[14]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[15]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[16]

Xiao Wen. Structurally stable homoclinic classes. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693

[17]

Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319

[18]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[19]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial & Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[20]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

2020 Impact Factor: 1.801

Article outline

[Back to Top]