• Previous Article
    New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors
  • JIMO Home
  • This Issue
  • Next Article
    Research on the parallel–batch scheduling with linearly lookahead model
doi: 10.3934/jimo.2021019

Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs

1. 

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. 

Department of Information Technology, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou 310053, China

*Corresponding author

Received  May 2020 Revised  December 2020 Published  January 2021

Fund Project: This work was supported by the Natural Science Foundation of China (11401533), the Zhejiang Provincial Natural Science Foundation of China (LY18A010030), the Scientific Research Fund of Zhejiang Provincial Education Department (19060042-F) and the Science Foundation of Zhejiang Sci-Tech University (19062150-Y)

This paper is concerned with a DC composite programs with infinite DC inequalities constraints. Without any topological assumptions and generalized increasing property, we first construct some new regularity conditions by virtue of the epigraph technique. Then we give some complete characterizations of the (stable) Fenchel-Lagrange duality and the (stable) Farkas-type assertions. As applications, corresponding assertions for the DC programs with infinite inequality constraints and the conic programs with DC composite function are also given.

Citation: Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021019
References:
[1]

R. I. BoţS.-M. Grad and G. Wanka, A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces, Mathematische Nachrichten, 281 (2008), 1088-1107.  doi: 10.1002/mana.200510662.  Google Scholar

[2]

R. I. BoţS.-M. Grad and G. Wanka, Generalized Moreau-Rockafellar results for composed convex functions, Optimization, 58 (2009), 917-933.  doi: 10.1080/02331930902945082.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, Journal of Mathematical Analysis and Applications, 337 (2008), 1315-1325.  doi: 10.1016/j.jmaa.2007.04.071.  Google Scholar

[4]

R. I. BoţI. B. Hodrea and G. Wanka, Some new Farkas-type results for inequality system with DC functions, Journal of Global Optimization, 39 (2007), 595-608.  doi: 10.1007/s10898-007-9159-8.  Google Scholar

[5]

N. DinhM. A. GobernaM. A. López and T. Q. Song, New Farkas-type constraint qualifications in convex infinite programming, ESAIM: Control Optimisation and Calculus of Variations, 13 (2007), 580-597.  doi: 10.1051/cocv:2007027.  Google Scholar

[6]

N. DinhB. S. Mordukhovich and T. T. A. Nghia, Qualification and optimality conditions for DC programs with infinite constraints, Acta Mathematica Vietnamica, 34 (2009), 125-155.   Google Scholar

[7]

D. H. Fang, Some relationships among the constraint qualifications for Lagrangian dualities in DC infinite optimization problems, Journal of Inequalities and Applications, 2015 (2015), 41-55.  doi: 10.1186/s13660-015-0561-3.  Google Scholar

[8]

D. H. Fang and X. Gong, Extended Farkas lemma and strong duality for composite optimization problems with DC functions, Optimization, 66 (2017), 179-196.  doi: 10.1080/02331934.2016.1266628.  Google Scholar

[9]

D. H. FangG. M. LeeC. Li and J. C. Yao, Extended Farkas's lemma and strong Lagrange dualities for DC infinite programming, Journal of Nonlinear and Convex Analysis, 14 (2013), 747-767.   Google Scholar

[10]

D. H. FangC. Li and K. F. Ng, Constraint qualifications for extended Farkas' lemmas and Lagrangian dualities in convex infinite programming, SIAM Journal on Optimization, 20 (2009), 1311-1332.  doi: 10.1137/080739124.  Google Scholar

[11]

D. H. FangM. D. Wang and X. P. Zhao, The strong duality for DC optimization problems with composite convex functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1337-1352.   Google Scholar

[12]

M. A. GobernaV. Jeyakumar and M. A. López, Necessary and sufficient conditions for solvability of systems of infinite convex inequalities, Nonlinear Analysis, 68 (2008), 1184-1194.  doi: 10.1016/j.na.2006.12.014.  Google Scholar

[13]

M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.  Google Scholar

[14]

V. JeyakumarA. RubinovB. M. Glover and Y. Ishizuka, Inequality systems and global optimization, Journal of Mathematical Analysis and Applications, 202 (1996), 900-919.  doi: 10.1006/jmaa.1996.0353.  Google Scholar

[15]

C. LiD. H. FangG. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM Journal on Optimization, 20 (2009), 1032-1051.  doi: 10.1137/080734352.  Google Scholar

[16]

C. Li and K. F. Ng, On constrint qualification for infinite system of convex inequalities in a Banach space, SIAM Journal on Optimization, 15 (2005), 488-512.  doi: 10.1137/S1052623403434693.  Google Scholar

[17]

C. LiK. F. Ng and T. K. Pong, Constrint qualifications for convex inequality systems with applications in constrained optimization, SIAM Journal on Optimization, 19 (2008), 163-187.  doi: 10.1137/060676982.  Google Scholar

[18]

G. LiX. Q. Yang and Y. Y. Zhou, Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces, Journal of Industrial and Management Optimization, 9 (2013), 671-687.  doi: 10.3934/jimo.2013.9.669.  Google Scholar

[19]

G. LiL. P. Zhang and Z. Liu, The stable duality of DC programs for composite convex functions, Journal of Industrial and Management Optimization, 13 (2017), 63-79.  doi: 10.3934/jimo.2016004.  Google Scholar

[20]

W. LiC. Nahak and I. Singer, Constrint qualifications for semi-infinite systems of convex inequalities, SIAM Journal on Optimization, 11 (2000), 31-52.  doi: 10.1137/S1052623499355247.  Google Scholar

[21]

J.-E. Martínez-Legaz and M. Volle, Duality in D.C. programming: The case of several D.C. constraints, Journal of Mathematical Analysis and Applications, 237 (1999), 657-671.  doi: 10.1006/jmaa.1999.6496.  Google Scholar

[22]

X.-K. Sun, Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results for DC infinite programming, Journal of Mathematical Analysis and Applications, 414 (2014), 590-611.  doi: 10.1016/j.jmaa.2014.01.033.  Google Scholar

[23]

X.-K. Sun and H.-Y. Fu, A note on optimality conditions for DC programs involving composite functions, Abstract and Applied Analysis, 2014 (2014), 203467, 6 pp. doi: 10.1155/2014/203467.  Google Scholar

[24]

X.-K. Sun, H.-Y. Fu and J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, Mathematics, 7 (2019). doi: 10.3390/math7010012.  Google Scholar

[25]

X.-K. SunX.-L. Guo and Y. Zhang, Fenchel-Lagrange duality for DC programs with composite functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1607-1618.   Google Scholar

[26]

X.-K. SunS.-J. Li and D. Zhao, Duality and Farkas-type results for DC infinite programming with inequality constraints, Taiwanese Journal of Mathematics, 17 (2013), 1227-1244.  doi: 10.11650/tjm.17.2013.2675.  Google Scholar

[27]

X.-K. SunX.-J. Long and J. Zeng, Constraint qualifications characterizing Fenchel duality in composed convex optimization, Journal of Nonlinear Convex Analysis, 17 (2016), 325-347.   Google Scholar

[28]

C. Zǎlinescu, Convex Analysis in General Vector Space, World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.  Google Scholar

show all references

References:
[1]

R. I. BoţS.-M. Grad and G. Wanka, A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces, Mathematische Nachrichten, 281 (2008), 1088-1107.  doi: 10.1002/mana.200510662.  Google Scholar

[2]

R. I. BoţS.-M. Grad and G. Wanka, Generalized Moreau-Rockafellar results for composed convex functions, Optimization, 58 (2009), 917-933.  doi: 10.1080/02331930902945082.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, Journal of Mathematical Analysis and Applications, 337 (2008), 1315-1325.  doi: 10.1016/j.jmaa.2007.04.071.  Google Scholar

[4]

R. I. BoţI. B. Hodrea and G. Wanka, Some new Farkas-type results for inequality system with DC functions, Journal of Global Optimization, 39 (2007), 595-608.  doi: 10.1007/s10898-007-9159-8.  Google Scholar

[5]

N. DinhM. A. GobernaM. A. López and T. Q. Song, New Farkas-type constraint qualifications in convex infinite programming, ESAIM: Control Optimisation and Calculus of Variations, 13 (2007), 580-597.  doi: 10.1051/cocv:2007027.  Google Scholar

[6]

N. DinhB. S. Mordukhovich and T. T. A. Nghia, Qualification and optimality conditions for DC programs with infinite constraints, Acta Mathematica Vietnamica, 34 (2009), 125-155.   Google Scholar

[7]

D. H. Fang, Some relationships among the constraint qualifications for Lagrangian dualities in DC infinite optimization problems, Journal of Inequalities and Applications, 2015 (2015), 41-55.  doi: 10.1186/s13660-015-0561-3.  Google Scholar

[8]

D. H. Fang and X. Gong, Extended Farkas lemma and strong duality for composite optimization problems with DC functions, Optimization, 66 (2017), 179-196.  doi: 10.1080/02331934.2016.1266628.  Google Scholar

[9]

D. H. FangG. M. LeeC. Li and J. C. Yao, Extended Farkas's lemma and strong Lagrange dualities for DC infinite programming, Journal of Nonlinear and Convex Analysis, 14 (2013), 747-767.   Google Scholar

[10]

D. H. FangC. Li and K. F. Ng, Constraint qualifications for extended Farkas' lemmas and Lagrangian dualities in convex infinite programming, SIAM Journal on Optimization, 20 (2009), 1311-1332.  doi: 10.1137/080739124.  Google Scholar

[11]

D. H. FangM. D. Wang and X. P. Zhao, The strong duality for DC optimization problems with composite convex functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1337-1352.   Google Scholar

[12]

M. A. GobernaV. Jeyakumar and M. A. López, Necessary and sufficient conditions for solvability of systems of infinite convex inequalities, Nonlinear Analysis, 68 (2008), 1184-1194.  doi: 10.1016/j.na.2006.12.014.  Google Scholar

[13]

M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.  Google Scholar

[14]

V. JeyakumarA. RubinovB. M. Glover and Y. Ishizuka, Inequality systems and global optimization, Journal of Mathematical Analysis and Applications, 202 (1996), 900-919.  doi: 10.1006/jmaa.1996.0353.  Google Scholar

[15]

C. LiD. H. FangG. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM Journal on Optimization, 20 (2009), 1032-1051.  doi: 10.1137/080734352.  Google Scholar

[16]

C. Li and K. F. Ng, On constrint qualification for infinite system of convex inequalities in a Banach space, SIAM Journal on Optimization, 15 (2005), 488-512.  doi: 10.1137/S1052623403434693.  Google Scholar

[17]

C. LiK. F. Ng and T. K. Pong, Constrint qualifications for convex inequality systems with applications in constrained optimization, SIAM Journal on Optimization, 19 (2008), 163-187.  doi: 10.1137/060676982.  Google Scholar

[18]

G. LiX. Q. Yang and Y. Y. Zhou, Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces, Journal of Industrial and Management Optimization, 9 (2013), 671-687.  doi: 10.3934/jimo.2013.9.669.  Google Scholar

[19]

G. LiL. P. Zhang and Z. Liu, The stable duality of DC programs for composite convex functions, Journal of Industrial and Management Optimization, 13 (2017), 63-79.  doi: 10.3934/jimo.2016004.  Google Scholar

[20]

W. LiC. Nahak and I. Singer, Constrint qualifications for semi-infinite systems of convex inequalities, SIAM Journal on Optimization, 11 (2000), 31-52.  doi: 10.1137/S1052623499355247.  Google Scholar

[21]

J.-E. Martínez-Legaz and M. Volle, Duality in D.C. programming: The case of several D.C. constraints, Journal of Mathematical Analysis and Applications, 237 (1999), 657-671.  doi: 10.1006/jmaa.1999.6496.  Google Scholar

[22]

X.-K. Sun, Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results for DC infinite programming, Journal of Mathematical Analysis and Applications, 414 (2014), 590-611.  doi: 10.1016/j.jmaa.2014.01.033.  Google Scholar

[23]

X.-K. Sun and H.-Y. Fu, A note on optimality conditions for DC programs involving composite functions, Abstract and Applied Analysis, 2014 (2014), 203467, 6 pp. doi: 10.1155/2014/203467.  Google Scholar

[24]

X.-K. Sun, H.-Y. Fu and J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, Mathematics, 7 (2019). doi: 10.3390/math7010012.  Google Scholar

[25]

X.-K. SunX.-L. Guo and Y. Zhang, Fenchel-Lagrange duality for DC programs with composite functions, Journal of Nonlinear Convex Analysis, 16 (2015), 1607-1618.   Google Scholar

[26]

X.-K. SunS.-J. Li and D. Zhao, Duality and Farkas-type results for DC infinite programming with inequality constraints, Taiwanese Journal of Mathematics, 17 (2013), 1227-1244.  doi: 10.11650/tjm.17.2013.2675.  Google Scholar

[27]

X.-K. SunX.-J. Long and J. Zeng, Constraint qualifications characterizing Fenchel duality in composed convex optimization, Journal of Nonlinear Convex Analysis, 17 (2016), 325-347.   Google Scholar

[28]

C. Zǎlinescu, Convex Analysis in General Vector Space, World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.  Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[3]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[6]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

2019 Impact Factor: 1.366

Article outline

[Back to Top]