• Previous Article
    Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters
  • JIMO Home
  • This Issue
  • Next Article
    A reformulation-linearization based algorithm for the smallest enclosing circle problem
doi: 10.3934/jimo.2021021

On the optimal control problems with characteristic time control constraints

Shanghai University, Shanghai, 200444, China

* Corresponding author: Shuxuan Su

Received  June 2020 Revised  December 2020 Published  January 2021

Fund Project: This work is supported by National Natural Science Foundation of China(NSFC), Grant No.11871039 and Science and Technology Commission of Shanghai Municipality(STCSM), Grant No. 20JC1413900

In this paper, we consider a class of optimal control problems with control constraints on a set of characteristic time instants. By applying the control parameterization technique, these constraints are imposed on the subdomains that contain the characteristic time points. The values of the control functions as well as the lengths for their corresponding subdomains become decision variables. Time-scaling transformation is an effective technique to optimize the length of each subdomain in a new time horizon. However, the characteristic time instants in the original time horizon become variable time instants in the new time horizon, and hence the control constraints imposed on these characteristic time points are difficult to be formulated in the new time horizon. We propose a surrogate condition and show that the characteristic time control constraints will be satisfied once the surrogate condition holds. Moreover, this surrogate condition is easy to formulate in the new time horizon. The resulting approximate problem can be readily solved by many existing computational methods for solving constrained optimal control problems. Finally, we conclude this paper by solving two examples.

Citation: Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021021
References:
[1]

N. U. Ahmed, Elements of Finite Dimensional Systems and Control Theory, Longman Scientific and Technical, 1988.  Google Scholar

[2]

M. Athans, Advances in Control Systems: Theory and Applications, vol. 11, Elsevier, 1966. doi: 10.1109/TAC.1966.1098358.  Google Scholar

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[4]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Physical Review Letters, 104 (2010), 063002. doi: 10.1103/PhysRevLett.104.063002.  Google Scholar

[5]

X. Chen, E. Torrontegui and J. G. Muga, Lewis-riesenfeld invariants and transitionless quantum driving, Physical Review A, 83 (2011), 062116. doi: 10.1103/PhysRevA.83.062116.  Google Scholar

[6]

X. Chen, E. Torrontegui, D. Stefanatos, J.-S. Li and J. G. Muga, Optimal trajectories for efficient atomic transport without final excitation, Physical Review A, 84 (2011), 043415. doi: 10.1103/PhysRevA.84.043415.  Google Scholar

[7]

Z. GongC. Liu and Y. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.  Google Scholar

[8]

T.-Y. Huang, B. A. Malomed and X. Chen, Shortcuts to adiabaticity for an interacting bose–einstein condensate via exact solutions of the generalized ermakov equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 053131, 10 pp. doi: 10.1063/5.0004309.  Google Scholar

[9]

L. Jennings, K. L. Teo, M. Fisher, C. J. Goh, L. S. Jennings and M. E. Fisher, MISER3 version 2, Optimal Control Software: Theory and User Manual, vol. 1, The University of Western Australia, Australia, 1997. Google Scholar

[10]

C. JiangK. XieC. YuM. YuH. WangY. He and K. L. Teo, A sequential computational approach to optimal control problems for differential-algebraic systems based on efficient implicit runge-kutta integration, Applied Mathematical Modelling, 58 (2018), 313-330.  doi: 10.1016/j.apm.2017.05.015.  Google Scholar

[11]

Y. Kagan, E. L. Surkov and G. V. Shlyapnikov, Evolution of a bose-condensed gas under variations of the confining potential, Physical Review A, 54 (1996), R1753–R1756. doi: 10.1103/PhysRevA.54.R1753.  Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar

[13]

L. KongC. YuK. L. Teo and C. Yang, Robust real-time optimization for blending operation of alumina production, Journal of Industrial and Management Optimization, 13 (2017), 1149-1167.  doi: 10.3934/jimo.2016066.  Google Scholar

[14]

H. LeeK. TeoV. Rehbock and L. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems & Applications, 6 (1997), 243-262.   Google Scholar

[15]

J. Li, K. Sun and X. Chen, Shortcut to adiabatic control of soliton matter waves by tunable interaction, Scientific Reports, 6 (2016), 38258. doi: 10.1038/srep38258.  Google Scholar

[16]

L. LiC. YuN. ZhangY. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.  Google Scholar

[17]

Q. LinR. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar

[18]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems B, 18 (2011), 59-76.   Google Scholar

[19]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria, Automatica, 48 (2012), 2116-2129.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[20]

C. LiuZ. GongE. Feng and H. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850.  doi: 10.3934/jimo.2009.5.835.  Google Scholar

[21]

R. C. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[22]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[23]

J. G. Muga, X. Chen, A. Ruschhaupt and D. Guéryodelin, Frictionless dynamics of bose–einstein condensates under fast trap variations, Journal of Physics B: Atomic Molecular and Optical Physics, 42 (2009), 241001. doi: 10.1088/0953-4075/42/24/241001.  Google Scholar

[24]

J. G. Muga, X. Chen, E. Torrontegui, S. Ibá nez, I. Lizuain and A. Ruschhaupt, Shortcuts to quantum adiabatic processes, Journal of Physics Conference, 306 (2011), 012022. doi: 10.1088/1742-6596/306/1/012022.  Google Scholar

[25]

M. NakazawaK. KurokawaH. Kubota and E. Yamada, Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape, Physical Review Letters, 65 (1990), 1881-1884.  doi: 10.1103/PhysRevLett.65.1881.  Google Scholar

[26]

J. Nocedal, S. Wright, T. Mikosch, S. Resnick and S. Robinson, Numerical Optimization, Springer series in operations research and financial engineering, 1999.  Google Scholar

[27]

L. Salasnich, A. Parola and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates, Physical Review A, 65 (2002), 043614. doi: 10.1103/PhysRevA.65.043614.  Google Scholar

[28]

D. Stefanatos, Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49 (2013), 3079-3083.  doi: 10.1016/j.automatica.2013.07.020.  Google Scholar

[29]

A. Tobalina, M. Palmero, S. Mart'inez-Garaot and J. G. Muga, Fast atom transport and launching in a nonrigid trap, Scientific Reports, 7 (2017), 5753. doi: 10.1038/s41598-017-05823-x.  Google Scholar

[30]

E. Torrontegui, S. Ibá nez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin and J. G. Muga, Fast atomic transport without vibrational heating, Physical Review A, 83 (2011), 013415. doi: 10.1103/PhysRevA.83.013415.  Google Scholar

[31]

E. TorronteguiS. Ibá nezS. Martínez-GaraotM. ModugnoA. del CampoD. Guéry-OdelinA. RuschhauptX. Chen and J. G. Muga, Shortcuts to adiabaticity, Advances in Atomic, Molecular, and Optical Physics, 62 (2013), 117-169.  doi: 10.1016/B978-0-12-408090-4.00002-5.  Google Scholar

[32]

L. WangJ. YuanC. Wu and X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.  Google Scholar

[33]

Y. WangC. Yu and K. Teo, A new computational strategy for optimal control problem with a cost on changing control, Numerical Algebra, Control and Optimization, 6 (2016), 339-364.  doi: 10.3934/naco.2016016.  Google Scholar

[34]

D. WuY. Bai and C. Yu, A new computational approach for optimal control problems with multiple time-delay, Automatica, 101 (2019), 388-395.  doi: 10.1016/j.automatica.2018.12.036.  Google Scholar

[35]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. Yu and L. Jennings, Visual miser: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[36]

C. YuQ. LinR. LoxtonK. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.  doi: 10.1007/s10957-015-0783-z.  Google Scholar

[37]

C. YuY. Wang and L. Li, Smoothing spline via optimal control under uncertainty, Applied Mathematical Modelling, 58 (2018), 203-216.  doi: 10.1016/j.apm.2017.07.062.  Google Scholar

[38]

Y. ZhangC. YuY. Xu and Y. Bai, Minimizing almost smooth control variation in nonlinear optimal control problems, Journal of Industrial and Management Optimization, 16 (2020), 1663-1683.  doi: 10.3934/jimo.2019023.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Elements of Finite Dimensional Systems and Control Theory, Longman Scientific and Technical, 1988.  Google Scholar

[2]

M. Athans, Advances in Control Systems: Theory and Applications, vol. 11, Elsevier, 1966. doi: 10.1109/TAC.1966.1098358.  Google Scholar

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[4]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Physical Review Letters, 104 (2010), 063002. doi: 10.1103/PhysRevLett.104.063002.  Google Scholar

[5]

X. Chen, E. Torrontegui and J. G. Muga, Lewis-riesenfeld invariants and transitionless quantum driving, Physical Review A, 83 (2011), 062116. doi: 10.1103/PhysRevA.83.062116.  Google Scholar

[6]

X. Chen, E. Torrontegui, D. Stefanatos, J.-S. Li and J. G. Muga, Optimal trajectories for efficient atomic transport without final excitation, Physical Review A, 84 (2011), 043415. doi: 10.1103/PhysRevA.84.043415.  Google Scholar

[7]

Z. GongC. Liu and Y. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.  Google Scholar

[8]

T.-Y. Huang, B. A. Malomed and X. Chen, Shortcuts to adiabaticity for an interacting bose–einstein condensate via exact solutions of the generalized ermakov equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 053131, 10 pp. doi: 10.1063/5.0004309.  Google Scholar

[9]

L. Jennings, K. L. Teo, M. Fisher, C. J. Goh, L. S. Jennings and M. E. Fisher, MISER3 version 2, Optimal Control Software: Theory and User Manual, vol. 1, The University of Western Australia, Australia, 1997. Google Scholar

[10]

C. JiangK. XieC. YuM. YuH. WangY. He and K. L. Teo, A sequential computational approach to optimal control problems for differential-algebraic systems based on efficient implicit runge-kutta integration, Applied Mathematical Modelling, 58 (2018), 313-330.  doi: 10.1016/j.apm.2017.05.015.  Google Scholar

[11]

Y. Kagan, E. L. Surkov and G. V. Shlyapnikov, Evolution of a bose-condensed gas under variations of the confining potential, Physical Review A, 54 (1996), R1753–R1756. doi: 10.1103/PhysRevA.54.R1753.  Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar

[13]

L. KongC. YuK. L. Teo and C. Yang, Robust real-time optimization for blending operation of alumina production, Journal of Industrial and Management Optimization, 13 (2017), 1149-1167.  doi: 10.3934/jimo.2016066.  Google Scholar

[14]

H. LeeK. TeoV. Rehbock and L. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems & Applications, 6 (1997), 243-262.   Google Scholar

[15]

J. Li, K. Sun and X. Chen, Shortcut to adiabatic control of soliton matter waves by tunable interaction, Scientific Reports, 6 (2016), 38258. doi: 10.1038/srep38258.  Google Scholar

[16]

L. LiC. YuN. ZhangY. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.  Google Scholar

[17]

Q. LinR. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar

[18]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems B, 18 (2011), 59-76.   Google Scholar

[19]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria, Automatica, 48 (2012), 2116-2129.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[20]

C. LiuZ. GongE. Feng and H. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850.  doi: 10.3934/jimo.2009.5.835.  Google Scholar

[21]

R. C. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[22]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[23]

J. G. Muga, X. Chen, A. Ruschhaupt and D. Guéryodelin, Frictionless dynamics of bose–einstein condensates under fast trap variations, Journal of Physics B: Atomic Molecular and Optical Physics, 42 (2009), 241001. doi: 10.1088/0953-4075/42/24/241001.  Google Scholar

[24]

J. G. Muga, X. Chen, E. Torrontegui, S. Ibá nez, I. Lizuain and A. Ruschhaupt, Shortcuts to quantum adiabatic processes, Journal of Physics Conference, 306 (2011), 012022. doi: 10.1088/1742-6596/306/1/012022.  Google Scholar

[25]

M. NakazawaK. KurokawaH. Kubota and E. Yamada, Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape, Physical Review Letters, 65 (1990), 1881-1884.  doi: 10.1103/PhysRevLett.65.1881.  Google Scholar

[26]

J. Nocedal, S. Wright, T. Mikosch, S. Resnick and S. Robinson, Numerical Optimization, Springer series in operations research and financial engineering, 1999.  Google Scholar

[27]

L. Salasnich, A. Parola and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped bose condensates, Physical Review A, 65 (2002), 043614. doi: 10.1103/PhysRevA.65.043614.  Google Scholar

[28]

D. Stefanatos, Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49 (2013), 3079-3083.  doi: 10.1016/j.automatica.2013.07.020.  Google Scholar

[29]

A. Tobalina, M. Palmero, S. Mart'inez-Garaot and J. G. Muga, Fast atom transport and launching in a nonrigid trap, Scientific Reports, 7 (2017), 5753. doi: 10.1038/s41598-017-05823-x.  Google Scholar

[30]

E. Torrontegui, S. Ibá nez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin and J. G. Muga, Fast atomic transport without vibrational heating, Physical Review A, 83 (2011), 013415. doi: 10.1103/PhysRevA.83.013415.  Google Scholar

[31]

E. TorronteguiS. Ibá nezS. Martínez-GaraotM. ModugnoA. del CampoD. Guéry-OdelinA. RuschhauptX. Chen and J. G. Muga, Shortcuts to adiabaticity, Advances in Atomic, Molecular, and Optical Physics, 62 (2013), 117-169.  doi: 10.1016/B978-0-12-408090-4.00002-5.  Google Scholar

[32]

L. WangJ. YuanC. Wu and X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.  Google Scholar

[33]

Y. WangC. Yu and K. Teo, A new computational strategy for optimal control problem with a cost on changing control, Numerical Algebra, Control and Optimization, 6 (2016), 339-364.  doi: 10.3934/naco.2016016.  Google Scholar

[34]

D. WuY. Bai and C. Yu, A new computational approach for optimal control problems with multiple time-delay, Automatica, 101 (2019), 388-395.  doi: 10.1016/j.automatica.2018.12.036.  Google Scholar

[35]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. Yu and L. Jennings, Visual miser: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[36]

C. YuQ. LinR. LoxtonK. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.  doi: 10.1007/s10957-015-0783-z.  Google Scholar

[37]

C. YuY. Wang and L. Li, Smoothing spline via optimal control under uncertainty, Applied Mathematical Modelling, 58 (2018), 203-216.  doi: 10.1016/j.apm.2017.07.062.  Google Scholar

[38]

Y. ZhangC. YuY. Xu and Y. Bai, Minimizing almost smooth control variation in nonlinear optimal control problems, Journal of Industrial and Management Optimization, 16 (2020), 1663-1683.  doi: 10.3934/jimo.2019023.  Google Scholar

Figure 1.  Time-scaling function for pre-fixed terminal time
Figure 2.  Optimal control for Problem 1 with $ p = 9 $.
Figure 3.  Optimal state trajectories for Problem 1 obtained using the two different methods with $ p = 9 $.
Figure 4.  Optimal controls for Problem 2 with $ p = 5 $
Figure 5.  Optimal controls for Problem 2 with $ p = 6 $
Figure 6.  Optimal controls for Problem 2 with p = 7
Figure 7.  Optimal state trajectories for Problem 2 with different partition numbers
Table 1.  Optimal costs for Problem 1 obtained using the two different methods
Knots $ G_0^* $
Traditional control parameterization New time-scaling transformation
$ p=5 $ $ 110.8 $ $ 1.9531 $
$ p=7 $ $ 42.34 $ $ 1.6671 $
$ p=9 $ $ 21.79 $ $ 1.6053 $
Knots $ G_0^* $
Traditional control parameterization New time-scaling transformation
$ p=5 $ $ 110.8 $ $ 1.9531 $
$ p=7 $ $ 42.34 $ $ 1.6671 $
$ p=9 $ $ 21.79 $ $ 1.6053 $
Table 2.  Optimal costs for Problem 2 using different lower bounds on each $ \theta_l $ with different partition $ p $
Lower bounds on $ \theta_l\ (l=1, \ldots, p) $ $ J_0^* $
$ p=5 $ $ p=6 $ $ p=7 $
$ \geq 0.05 $ $ 12.189 $ $ 8.113 $ $ 4.572 $
$ \geq 0.1 $ $ 12.347 $ $ 8.258 $ $ 4.673 $
$ \geq 0.5 $ $ 13.147 $ $ 9.442 $ $ 5.506 $
$ \geq 1 $ $ 14.453 $ $ 10.924 $ $ 7.000 $
Lower bounds on $ \theta_l\ (l=1, \ldots, p) $ $ J_0^* $
$ p=5 $ $ p=6 $ $ p=7 $
$ \geq 0.05 $ $ 12.189 $ $ 8.113 $ $ 4.572 $
$ \geq 0.1 $ $ 12.347 $ $ 8.258 $ $ 4.673 $
$ \geq 0.5 $ $ 13.147 $ $ 9.442 $ $ 5.506 $
$ \geq 1 $ $ 14.453 $ $ 10.924 $ $ 7.000 $
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[6]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[7]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[10]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[11]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[12]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[16]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[17]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[18]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]