[1]
|
M. Allahyar and M. Rostamy-Malkhalifeh, Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale, Computers & Industrial Engineering, 82 (2015), 78-81.
doi: 10.1016/j.cie.2015.01.022.
|
[2]
|
H. Azizi, A. Amirteimoori and S. Kordrostami, A note on dual models of interval DEA and its extension to interval data, International Journal of Industrial Mathematics, 10 (2018), 111-126.
|
[3]
|
H. Azizi and Y.-M. Wang, Improved DEA models for measuring interval efficiencies of decision-making units, Measurement, 46 (2013), 1325-1332.
doi: 10.1016/j.measurement.2012.11.050.
|
[4]
|
Y. Chen, J. Du and J. Huo, Super-efficiency based on a modified directional distance function, Omega, 41 (2013), 621-625.
doi: 10.1016/j.omega.2012.06.006.
|
[5]
|
G. Cheng, P. Zervopoulos and Z. Qian, A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis, European Journal of Operational Research, 225 (2013), 100-105.
doi: 10.1016/j.ejor.2012.09.031.
|
[6]
|
W. W. Cooper, K. S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Management Science, 45 (1999), 597-607.
doi: 10.1287/mnsc.45.4.597.
|
[7]
|
B. Ebrahimi, M. Tavana, M. Rahmani and F. J. Santos-Arteaga, Efficiency measurement in data envelopment analysis in the presence of ordinal and interval data, Neural Computing and Applications, 30 (2018), 1971-1982.
doi: 10.1007/s00521-016-2826-2.
|
[8]
|
A. Emrouznejad, A. L. Anouze and E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA, European Journal of Operational Research, 200 (2010), 297-304.
doi: 10.1007/s10479-009-0639-8.
|
[9]
|
A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini and M. Tavana, General and multiplicative non-parametric corporate performance models with interval ratio data, Applied Mathematical Modelling, 36 (2012), 5506-5514.
doi: 10.1016/j.apm.2011.12.040.
|
[10]
|
T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data, European Journal of Operational Research, 136 (2002), 32-45.
doi: 10.1016/S0377-2217(01)00055-8.
|
[11]
|
A. Esmaeilzadeh and A. Hadi-Vencheh, A super-efficiency model for measuring aggregative efficiency of multi-period production systems, Measurement, 46 (2013), 3988-3993.
doi: 10.1016/j.measurement.2013.07.023.
|
[12]
|
R. Färe and S. Grosskopf, Network DEA, Socio-Economic Planning Sciences, 34 (2000), 35-49.
|
[13]
|
R. Färe, S. Grosskopf and P. Roos, Malmquist productivity indexes: A survey of theory and practice, in Index Numbers: Essays in Honour of Sten Malmquist, Kluwer Academic Publishers, Boston, 1998,127–190.
|
[14]
|
R. Färe and S. Grosskopf, Intertemporal production frontiers: With dynamic dea, Journal of the Operational Research Society, 48 (1997), 656-656.
|
[15]
|
I.-L. Guo, H.-S. Lee and D. Lee, An integrated model for slack-based measure of super-efficiency in additive DEA, Omega, 67 (2017), 160-167.
doi: 10.1016/j.omega.2016.05.002.
|
[16]
|
P. Guo, Fuzzy data envelopment analysis and its application to location problems, Information Sciences, 179 (2009), 820-829.
doi: 10.1016/j.ins.2008.11.003.
|
[17]
|
A. Hatami-Marbini, A. Emrouznejad and P. J. Agrell, Interval data without sign restrictions in DEA, Applied Mathematical Modelling, 38 (2014), 2028-2036.
doi: 10.1016/j.apm.2013.10.027.
|
[18]
|
A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, European Journal of Operational Research, 214 (2011), 457-472.
doi: 10.1016/j.ejor.2011.02.001.
|
[19]
|
G. R. Jahanshahloo and M. Piri, Data Envelopment Analysis (DEA) with integer and negative inputs and outputs, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-15.
|
[20]
|
C. Kao and S.-T. Liu, Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks, European Journal of Operational Research, 196 (2009), 312-322.
doi: 10.1016/j.ejor.2008.02.023.
|
[21]
|
R. Kazemi Matin and A. Emrouznejad, An integer-valued data envelopment analysis model with bounded outputs, International Transactions in Operational Research, 18 (2011), 741-749.
doi: 10.1111/j.1475-3995.2011.00828.x.
|
[22]
|
K. Kerstens and I. Van de Woestyne, A note on a variant of radial measure capable of dealing with negative inputs and outputs in DEA, European Journal of Operational Research, 234 (2014), 341-342.
doi: 10.1016/j.ejor.2013.10.067.
|
[23]
|
K. Khalili-Damghani, M. Tavana and E. Haji-Saami, A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment, Expert Systems with Applications, 42 (2015), 760-773.
doi: 10.1016/j.eswa.2014.08.028.
|
[24]
|
T. Kuosmanen and R. K. Matin, Theory of integer-valued data envelopment analysis, European Journal of Operational Research, 192 (2009), 658-667.
doi: 10.1016/j.ejor.2007.09.040.
|
[25]
|
K. Li and M. Song, Green development performance in China: A metafrontier non-radial approach, Sustainability, 8 (2016), 219.
doi: 10.3390/su8030219.
|
[26]
|
L. Li, X. Lv, W. Xu, Z. Zhang and X. Rong, Dynamic super-efficiency interval data envelopment analysis, in Computer Science & Education (ICCSE), 10th International Conference, IEEE, 2015.
|
[27]
|
R. Lin and Z. Chen, Super-efficiency measurement under variable return to scale: An approach based on a new directional distance function, Journal of the Operational Research Society, 66 (2015), 1506-1510.
doi: 10.1057/jors.2014.118.
|
[28]
|
R. Lin and Z. Chen, A directional distance based super-efficiency DEA model handling negative data, Journal of the Operational Research Society, 68 (2017), 1312-1322.
doi: 10.1057/s41274-016-0137-8.
|
[29]
|
S. Lozano and G. Villa, Centralized DEA models with the possibility of downsizing, Journal of the Operational Research Society, 56 (2005), 357-364.
doi: 10.1057/palgrave.jors.2601838.
|
[30]
|
S. Lozano and G. Villa, Data envelopment analysis of integer-valued inputs and outputs, Computers & Operations Research, 33 (2006), 3004-3014.
doi: 10.1016/j.cor.2005.02.031.
|
[31]
|
F. B. Mariz, M. R. Almeida and D. Aloise, A review of dynamic data envelopment analysis: State of the art and applications, International Transactions in Operational Research, 25 (2018), 469-505.
doi: 10.1111/itor.12468.
|
[32]
|
O. B. Olesen and N. C. Petersen, Stochastic data envelopment analysis–A review, European Journal of Operational Research, 251 (2016), 2-21.
doi: 10.1016/j.ejor.2015.07.058.
|
[33]
|
H. Omrani and E. Soltanzadeh, Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.
doi: 10.1016/j.jairtraman.2016.07.014.
|
[34]
|
M. C. A. S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: A directional distance approach applied to bank branches, Journal of the Operational Research Society, 55 (2004), 1111-1121.
doi: 10.1057/palgrave.jors.2601768.
|
[35]
|
R. R. Russell and W. Schworm, Technological inefficiency indexes: A binary taxonomy and a generic theorem, Journal of Productivity Analysis, 49 (2018), 17-23.
|
[36]
|
L. M. Seiford and J. Zhu, Infeasibility of super-efficiency data envelopment analysis models, INFOR: Information Systems and Operational Research, 37 (1999), 174-187.
doi: 10.1080/03155986.1999.11732379.
|
[37]
|
L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation, European Journal of Operational Research, 142 (2002), 16-20.
doi: 10.1016/S0377-2217(01)00293-4.
|
[38]
|
J. K. Sengupta, Stochastic data envelopment analysis: A new approach, Applied Economics Letters, 5 (1998), 287-290.
doi: 10.1002/(SICI)1099-0747(199603)12:1<1::AID-ASM274>3.0.CO;2-Y.
|
[39]
|
Y. G. Smirlis, E. K. Maragos and D. K. Despotis, Data envelopment analysis with missing values: An interval DEA approach, Applied Mathematics and Computation, 177 (2006), 1-10.
doi: 10.1016/j.amc.2005.10.028.
|
[40]
|
J. Sun, Y. Miao, J. Wu, L. Cui and R. Zhong, Improved interval DEA models with common weight, Kybernetika, 50 (2014), 774-785.
doi: 10.14736/kyb-2014-5-0774.
|
[41]
|
Y. Tan, U. Shetty, A. Diabat and T. P. M. Pakkala, Aggregate directional distance formulation of DEA with integer variables, Annals of Operations Research, 235 (2015), 741-756.
doi: 10.1007/s10479-015-1891-8.
|
[42]
|
M. Toloo, N. Aghayi and M. Rostamy-Malkhalifeh, Measuring overall profit efficiency with interval data, Applied Mathematics and Computation, 201 (2008), 640-649.
doi: 10.1016/j.amc.2007.12.061.
|
[43]
|
K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.
doi: 10.1016/S0377-2217(99)00407-5.
|
[44]
|
K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.
doi: 10.1016/j.omega.2009.07.003.
|
[45]
|
T. H. Tran, Y. Mao, P. Nathanail, P. O. Siebers and D. Robinson, Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis, Omega, 85 (2019), 156-165.
doi: 10.1016/j.omega.2018.06.008.
|
[46]
|
Y.-M. Wang, R. Greatbanks and J.-B. Yang, Interval efficiency assessment using data envelopment analysis, Fuzzy Sets and Systems, 153 (2005), 347-370.
doi: 10.1016/j.fss.2004.12.011.
|
[47]
|
Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application, Journal of Systems Engineering, 18 (2003), 67-70.
|
[48]
|
Z. Yang, D. K. J. Lin and A. Zhang, Interval-valued data prediction via regularized artificial neural network, Neurocomputing, 331 (2019), 336-345.
doi: 10.1016/j.neucom.2018.11.063.
|
[49]
|
S.-H. Yu and C.-W. Hsu, A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: An application to a municipal bus system, Annals of Operations Research, 287 (2020), 515-535.
doi: 10.1007/s10479-019-03448-z.
|
[50]
|
A. Zanella, A. S. Camanho and T. G. Dias, Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis, European Journal of Operational Research, 245 (2015), 517-530.
doi: 10.1016/j.ejor.2015.03.036.
|