doi: 10.3934/jimo.2021028

Can the reform of green credit policy promote enterprise eco-innovation? A theoretical analysis

a. 

College of Economic and Management, Nanjing University of Aeronautics, and Astronautics, Nanjing 211106, China

b. 

College of Intelligent Manufacturing, TaiZhou Institute of Sci.& Tech., Njust, Taizhou 225300, China

c. 

College of Management Engineering, Nanjing University of Information, Science & Technology, Nanjing, 210044, China

* Corresponding author: 1017379408@qq.com

Received  August 2020 Revised  November 2020 Early access  February 2021

The weakness that China's traditional credit fails to effectively limit enterprise emissions has become increasingly evident. Although the industry-oriented green credit policy has achieved certain effects on environmental performance through the differentiated resource allocation of the industries, banking financial institutions have the ambiguity in the definition of the credit object and the characteristics of profit maximization, which cannot achieve the essential purpose of green credit sustainably. Hence, we propose a new eco-innovation-oriented green credit policy. We prove theoretically that the new green credit is feasible and can be used as an exogenous driver for improving enterprises' eco-innovation. Contrasting with traditional credit, the newly proposed credit policy is an expansionary monetary policy, which has the characteristics of expanding credit lines and differential interest rates. Utilizing evolutionary game theory, we calculate the evolution stability conditions of green credit and eco-innovation. The results show that the key to green credit to maintaining sustainable development is the return on investment due to eco-innovation. Our theoretical analysis also reveals that environmental benefit-cost ratios and adjustment cost parameters of different assets are the important factors for green credit.

Citation: Sheng Wu, Liangpeng Wu, Xianglian Zhao. Can the reform of green credit policy promote enterprise eco-innovation? A theoretical analysis. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021028
References:
[1]

A. B. Abel, The effects of q and cash flow on investment in the presence of measurement error, J. Financ. Econ., 128 (2018), 363-377.  doi: 10.1016/j.jfineco.2018.02.005.  Google Scholar

[2]

A. B. Abel and J. C. Eberly, A unified model of investment under uncertainty, Am. Econ. Rev., 84 (1994), 1369-1384.  doi: 10.3386/w4296.  Google Scholar

[3]

I. AlexopoulosK. Kounetas and D. Tzelepis, Environmental and financial performance. Is there a win-win or a win-loss situation? Evidence from the Greek manufacturing, J. Clean Prod., 197 (2018), 1275-1283.  doi: 10.1016/j.jclepro.2018.06.302.  Google Scholar

[4]

M. D. AmoreC. Schneider and A. Žaldokas, Credit supply and corporate innovation, J. Financ. Econ., 109 (2013), 835-855.   Google Scholar

[5]

D. AndreiW. Mann and N. Moyen, Why did the q theory of investment start working?, J. Financ. Econ., 133 (2019), 251-272.   Google Scholar

[6]

M. G. Arnold and K. Hockerts, The greening Dutchman: Philips' process of green flagging to drive sustainable innovations, Bus. Strateg. Environ., 20 (2011), 394-407.  doi: 10.1002/bse.700.  Google Scholar

[7]

J. Atanassov, V. Nanda and A. Seru, Finance and innovation: The case of publicly listed firms, Unpublished working paper. University of Oregon, Georgia State of Technology, and University of Chicago. Google Scholar

[8]

R. Baeriswyl and C. Cornand, The distortionary effect of monetary policy: Credit expansion vs. lump-sum transfers in the lab, B. E. J. Macroecono., 18 (2018), 1-30.   Google Scholar

[9]

J. Barney, Firm resources and sustained competitive advantage, J. Manag., 17 (1991), 99-120.  doi: 10.1016/S0742-3322(00)17018-4.  Google Scholar

[10]

F. BasrawiT. K. IbrahimK. Habib and T. Yamada, Effect of operation strategies on the economic and environmental performance of a micro gas turbine trigeneration system in a tropical region, Energy, 97 (2016), 262-272.  doi: 10.1016/j.energy.2015.12.117.  Google Scholar

[11]

W. J. Baumol, The Free-Market Innovation Machine: Analyzing the Growth Miracle of Capitalism, Princeton University Press, 2002. doi: 10.1515/9781400851638.  Google Scholar

[12]

L. BenfratelloF. Schiantarelli and A. Sembenelli, Banks and innovation: Microeconometric evidence on Italian firms, J. Financ. Econ., 90 (2008), 197-217.  doi: 10.1016/j.jfineco.2008.01.001.  Google Scholar

[13]

P. BerroneA. FosfuriL. Gelabert and L. R. Gomez-Mejia, Necessity as the mother of "green" inventions: Institutional pressures and environmental innovations, Strateg. Manage. J., 34 (2013), 891-909.  doi: 10.1002/smj.2041.  Google Scholar

[14]

A. Bitat, Environmental regulation and eco-innovation: The porter hypothesis refined, Eurasian Bus. Rev., 8 (2018), 299-321.  doi: 10.1007/s40821-017-0084-6.  Google Scholar

[15]

P. BoltonH. Chen and N. Wang, A unified theory of Tobin's q, corporate investment, financing, and risk management, J. Financ., 66 (2011), 1545-1578.  doi: 10.3386/w14845.  Google Scholar

[16]

M. B. BossleM. D. de BarcellosL. M. Vieira and L. Sauvée, The drivers for adoption of eco-innovation, J. Clean Prod., 113 (2016), 861-872.  doi: 10.1016/j.jclepro.2015.11.033.  Google Scholar

[17]

W. Cai and G. Li, The drivers of eco-innovation and its impact on performance: Evidence from China, J. Clean Prod., 176 (2018), 110-118.  doi: 10.1016/j.jclepro.2017.12.109.  Google Scholar

[18]

W. Cai and X. Zhou, On the drivers of eco-innovation: Empirical evidence from China, J. Clean Prod., 79 (2014), 239-248.  doi: 10.1016/j.jclepro.2014.05.035.  Google Scholar

[19]

L. M. CamposD. A. de Melo HeizenM. A. Verdinelli and P. A. C. Miguel, Environmental performance indicators: A study on iso 14001 certified companies, J. Clean Prod., 99 (2015), 286-296.  doi: 10.1016/j.jclepro.2015.03.019.  Google Scholar

[20]

J. Carrillo-HermosillaP. Del Río and T. Könnölä, Diversity of eco-innovations: Reflections from selected case studies, J. Clean Prod., 18 (2010), 1073-1083.  doi: 10.1016/j.jclepro.2010.02.014.  Google Scholar

[21]

W. Chen and Z. Hu, Using evolutionary game theory to study governments and manufacturers' behavioral strategies under various carbon taxes and subsidies, J. Clean Prod., 201 (2018), 123-141.  doi: 10.1016/j.jclepro.2018.08.007.  Google Scholar

[22]

C. ChengY. Hua and D. Tan, Spatial dynamics and determinants of sustainable finance: Evidence from venture capital investment in China, J. Clean Prod., 232 (2019), 1148-1157.  doi: 10.1016/j.jclepro.2019.05.360.  Google Scholar

[23]

C. C. ChengC. Yang and C. Sheu, The link between eco-innovation and business performance: A Taiwanese industry context, J. Clean Prod., 64 (2014), 81-90.  doi: 10.1016/j.jclepro.2013.09.050.  Google Scholar

[24]

G. ContrerasJ. W. Bos and S. Kleimeier, Self-regulation in sustainable finance: The adoption of the equator principles, World Dev., 122 (2019), 306-324.  doi: 10.1016/j.worlddev.2019.05.030.  Google Scholar

[25]

M. C. CuervaÁ. Triguero-Cano and D. Córcoles, Drivers of green and non-green innovation: Empirical evidence in low-tech smes, J. Clean Prod., 68 (2014), 104-113.  doi: 10.1016/j.jclepro.2013.10.049.  Google Scholar

[26]

S. R. Das, The surprise element: Jumps in interest rates, J. Econom., 106 (2002), 27-65.  doi: 10.1016/S0304-4076(01)00085-9.  Google Scholar

[27]

M. D. Delis and G. P. Kouretas, Interest rates and bank risk-taking, J. Bank Financ., 35 (2011), 840-855.  doi: 10.1016/j.jbankfin.2010.09.032.  Google Scholar

[28]

M. FingerI. Gavious and R. Manos, Environmental risk management and financial performance in the banking industry: A cross-country comparison, J. Int. Financ. Mark. Institut. Money, 52 (2018), 240-261.  doi: 10.1016/j.intfin.2017.09.019.  Google Scholar

[29]

D. Friedman, Evolutionary games in economics, Econometrica, 59 (1991), 637-666.  doi: 10.2307/2938222.  Google Scholar

[30]

D. Friedman, On economic applications of evolutionary game theory, J. Evol. Econ., 8 (1998), 15-43.  doi: 10.1007/s001910050054.  Google Scholar

[31]

C. Fussler and P. James, Eco-innovation: A breakthrough discipline for innovation and sustainability, Pitman: London, 1996. Google Scholar

[32]

E. M. García-GraneroL. Piedra-Muñoz and E. Galdeano-Gómez, Eco-innovation measurement: A review of firm performance indicators, J. Clean Prod., 191 (2018), 304-317.   Google Scholar

[33]

C. Ghisetti and K. Rennings, Environmental innovations and profitability: How does it pay to be green? An empirical analysis on the German innovation survey, J. Clean Prod., 75 (2014), 106-117.  doi: 10.1016/j.jclepro.2014.03.097.  Google Scholar

[34]

F. HeX. MiaoC. W. Wong and S. Lee, Contemporary corporate eco-innovation research: A systematic review, J. Clean Prod., 174 (2018), 502-526.  doi: 10.1016/j.jclepro.2017.10.314.  Google Scholar

[35]

L. HeL. ZhangZ. ZhongD. Wang and F. Wang, Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China, J. Clean Prod., 208 (2019), 363-372.  doi: 10.1016/j.jclepro.2018.10.119.  Google Scholar

[36]

A. M. Herrera and R. Minetti, Informed finance and technological change: Evidence from credit relationships, J. Financ. Econ., 83 (2007), 223-269.  doi: 10.2139/ssrn.539782.  Google Scholar

[37]

J. Hojnik and M. Ruzzier, The driving forces of process eco-innovation and its impact on performance: Insights from Slovenia, J. Clean Prod., 133 (2016), 812-825.  doi: 10.1016/j.jclepro.2016.06.002.  Google Scholar

[38]

P. HsuX. Tian and Y. Xu, Financial development and innovation: Cross-country evidence, J. Financ. Econ., 112 (2014), 116-135.   Google Scholar

[39]

O. Jaeggi, G. W. Ziero, J. Tobin-de la Puente and J. F. Kölbel, Understanding sustainable finance, Positive Impact Investing, Springer, 2018, 39-63. doi: 10.1007/978-3-319-10118-7_3.  Google Scholar

[40]

K. JiangD. YouR. Merrill and Z. Li, Implementation of a multi-agent environmental regulation strategy under Chinese fiscal decentralization: An evolutionary game theoretical approach, J. Clean Prod., 214 (2019), 902-915.  doi: 10.1016/j.jclepro.2018.12.252.  Google Scholar

[41]

D. Jin and N. Mengqi, The paradox of green credit in China, Energy Procedia, 5 (2011), 1979-1986.  doi: 10.1016/j.egypro.2011.03.340.  Google Scholar

[42]

E. KarakayaA. Hidalgo and C. Nuur, Diffusion of eco-innovations: A review, Renew. Sust. Energ. Rev., 33 (2014), 392-399.  doi: 10.1016/j.rser.2014.01.083.  Google Scholar

[43]

R. Kemp and M. Volpi, The diffusion of clean technologies: A review with suggestions for future diffusion analysis, J. Clean Prod., 16 (2008), 14-21.  doi: 10.1016/j.jclepro.2007.10.019.  Google Scholar

[44]

T. Kuo and S. Smith, A systematic review of technologies involving eco-innovation for enterprises moving towards sustainability, J. Clean Prod., 192 (2018), 207-220.  doi: 10.1016/j.jclepro.2018.04.212.  Google Scholar

[45]

L. LaevenR. Levine and S. Michalopoulos, Financial innovation and endogenous growth, J. Financ. Intermed., 24 (2015), 1-24.   Google Scholar

[46]

T. Lagoarde-Segot, Diversifying finance research: From financialization to sustainability, Int. Rev. Financ. Anal., 39 (2015), 1-6.  doi: 10.1016/j.irfa.2015.01.004.  Google Scholar

[47]

T. Lagoarde-Segot, Sustainable finance. A critical realist perspective, Res. Int. Bus. Financ., 47 (2019), 1-9.  doi: 10.1016/j.ribaf.2018.04.010.  Google Scholar

[48]

A. LaschiE. Marchi and S. González-García, Environmental performance of wood pellets' production through life cycle analysis, Energy, 103 (2016), 469-480.  doi: 10.1016/j.energy.2016.02.165.  Google Scholar

[49]

J. LernerM. Sorensen and P. Strömberg, Private equity and long-run investment: The case of innovation, J. Financ., 66 (2011), 445-477.  doi: 10.3386/w14623.  Google Scholar

[50]

C. LiF. ZhangC. CaoY. Liu and T. Qu, Organizational coordination in sustainable humanitarian supply chain: An evolutionary game approach, J. Clean Prod., 219 (2019), 291-303.  doi: 10.1016/j.jclepro.2019.01.233.  Google Scholar

[51]

R. Li and R. Ramanathan, Exploring the relationships between different types of environmental regulations and environmental performance: Evidence from China, J. Clean Prod., 196 (2018), 1329-1340.  doi: 10.1016/j.jclepro.2018.06.132.  Google Scholar

[52]

J. LiuY. XiaY. FanS. Lin and J. Wu, Assessment of a green credit policy aimed at energy-intensive industries in china based on a financial cge model, J. Clean Prod., 163 (2017), 293-302.  doi: 10.1016/j.jclepro.2015.10.111.  Google Scholar

[53]

X. LiuE. Wang and D. Cai, Green credit policy, property rights and debt financing: Quasi-natural experimental evidence from China, Financ. Res. Lett., 29 (2019), 129-135.  doi: 10.1016/j.frl.2019.03.014.  Google Scholar

[54]

A. MarconJ. F. de Medeiros and J. L. D. Ribeiro, Innovation and environmentally sustainable economy: Identifying the best practices developed by multinationals in Brazil, J. Clean Prod., 160 (2017), 83-97.  doi: 10.1016/j.jclepro.2017.02.101.  Google Scholar

[55]

J. Murphy and A. Gouldson, Environmental policy and industrial innovation: Integrating environment and economy through ecological modernisation, Geoforum, 31 (2000), 33-44.  doi: 10.1016/S0016-7185(99)00042-1.  Google Scholar

[56]

Y. NakaoA. AmanoK. MatsumuraK. Genba and M. Nakano, Relationship between environmental performance and financial performance: An empirical analysis of japanese corporations, Bus. Strateg. Environ., 16 (2007), 106-118.  doi: 10.1002/bse.476.  Google Scholar

[57]

R. NidumoluC. K. Prahalad and M. R. Rangaswami, Why sustainability is now the key driver of innovation, Harv. Bus. Rev., 87 (2009), 57-64.   Google Scholar

[58]

X. Peng and Y. Liu, Behind eco-innovation: Managerial environmental awareness and external resource acquisition, J. Clean Prod., 139 (2016), 347-360.  doi: 10.1016/j.jclepro.2016.08.051.  Google Scholar

[59]

R. H. Peters and L. A. Taylor, Intangible capital and the investment-q relation, J. Financ. Econ., 123 (2017), 251-272.   Google Scholar

[60]

M. ProkopczukS. T. RachevG. Schindlmayr and S. Trück, Quantifying risk in the electricity business: A raroc-based approach, Energy Econ., 29 (2007), 1033-1049.  doi: 10.1016/j.eneco.2006.08.006.  Google Scholar

[61]

J. QianP. E. Strahan and Z. Yang, The impact of incentives and communication costs on information production and use: Evidence from bank lending, J. Financ., 70 (2015), 1457-1493.  doi: 10.1111/jofi.12251.  Google Scholar

[62]

M. RabertoB. OzelL. PontaA. Teglio and S. Cincotti, From financial instability to green finance: The role of banking and credit market regulation in the eurace model, J. Evol. Econ., 29 (2019), 429-465.  doi: 10.1007/s00191-018-0568-2.  Google Scholar

[63]

K. Rennings, Redefining innovation-Eco-innovation research and the contribution from ecological economics, Ecol. Econ., 32 (2000), 319-332.  doi: 10.1016/S0921-8009(99)00112-3.  Google Scholar

[64]

S. ScarpelliniL. M. Marín-VinuesaP. Portillo-Tarragona and J. M. Moneva, Defining and measuring different dimensions of financial resources for business eco-innovation and the influence of the firms' capabilities, J. Clean Prod., 204 (2018), 258-269.  doi: 10.1016/j.jclepro.2018.08.320.  Google Scholar

[65]

B. Scholtens and L. Dam, Banking on the equator. Are banks that adopted the equator principles different from non-adopters?, World Dev., 35 (2007), 1307-1328.  doi: 10.1016/j.worlddev.2006.10.013.  Google Scholar

[66]

A. SmithP. Voss Jan and J. Grin, Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges, Res. Policy, 39 (2010), 435-448.  doi: 10.1016/j.respol.2010.01.023.  Google Scholar

[67]

N. M. Stoughton and J. Zechner, Optimal capital allocation using raroc(tm) and eva, J. Financ. Intermed., 16 (2007), 312-342.   Google Scholar

[68]

Q. Sun and M. Z. Xiaolan, Financing intangible capital, J. Financ. Intermed., 133 (2019), 564-588.   Google Scholar

[69]

D. D. Thomakos and T. A. Alexopoulos, Carbon intensity as a proxy for environmental performance and the informational content of the epi, Energy Policy, 94 (2016), 179-190.  doi: 10.1016/j.enpol.2016.03.030.  Google Scholar

[70]

P. Tian and B. Lin, Impact of financing constraints on firm's environmental performance: Evidence from China with survey data, J. Clean Prod., 217 (2019), 432-439.  doi: 10.1016/j.jclepro.2019.01.209.  Google Scholar

[71]

C. TrumppJ. EndrikatC. Zopf and E. Guenther, Definition, conceptualization, and measurement of corporate environmental performance: A critical examination of a multidimensional construct, J. Bus. Ethics, 126 (2015), 185-204.  doi: 10.1007/s10551-013-1931-8.  Google Scholar

[72]

M. TsengR. WangA. S. ChiuY. Geng and Y. H. Lin, Improving performance of green innovation practices under uncertainty, J. Clean Prod., 40 (2013), 71-82.  doi: 10.1016/j.jclepro.2011.10.009.  Google Scholar

[73]

C. TumeleroR. Sbragia and S. Evans, Cooperation in r & d and eco-innovations: The role in companies' socioeconomic performance, J. Clean Prod., 207 (2019), 1138-1149.  doi: 10.1016/j.jclepro.2018.09.146.  Google Scholar

[74]

C. WangP. NieD. Peng and Z. Li, Green insurance subsidy for promoting clean production innovation, J. Clean Prod., 148 (2017), 111-117.  doi: 10.1016/j.jclepro.2017.01.145.  Google Scholar

[75]

M. Warusawitharana, Research and development, profits, and firm value: A structural estimation, Quant. Econ., 6 (2015), 531-565.  doi: 10.3982/QE282.  Google Scholar

[76]

A. F. XavierR. M. NaveiroA. Aoussat and T. Reyes, Systematic literature review of eco-innovation models: Opportunities and recommendations for future research, J. Clean Prod., 149 (2017), 1278-1302.  doi: 10.1016/j.jclepro.2017.02.145.  Google Scholar

[77]

D. YangZ. ChenY. Yang and P. Nie, Green financial policies and capital flows, Physica A, 522 (2019), 135-146.  doi: 10.1016/j.physa.2019.01.126.  Google Scholar

[78]

B. ZhangY. Yang and J. Bi, Tracking the implementation of green credit policy in China: Top-down perspective and bottom-up reform, J. Environ. Manage., 92 (2011), 1321-1327.  doi: 10.1016/j.jenvman.2010.12.019.  Google Scholar

show all references

References:
[1]

A. B. Abel, The effects of q and cash flow on investment in the presence of measurement error, J. Financ. Econ., 128 (2018), 363-377.  doi: 10.1016/j.jfineco.2018.02.005.  Google Scholar

[2]

A. B. Abel and J. C. Eberly, A unified model of investment under uncertainty, Am. Econ. Rev., 84 (1994), 1369-1384.  doi: 10.3386/w4296.  Google Scholar

[3]

I. AlexopoulosK. Kounetas and D. Tzelepis, Environmental and financial performance. Is there a win-win or a win-loss situation? Evidence from the Greek manufacturing, J. Clean Prod., 197 (2018), 1275-1283.  doi: 10.1016/j.jclepro.2018.06.302.  Google Scholar

[4]

M. D. AmoreC. Schneider and A. Žaldokas, Credit supply and corporate innovation, J. Financ. Econ., 109 (2013), 835-855.   Google Scholar

[5]

D. AndreiW. Mann and N. Moyen, Why did the q theory of investment start working?, J. Financ. Econ., 133 (2019), 251-272.   Google Scholar

[6]

M. G. Arnold and K. Hockerts, The greening Dutchman: Philips' process of green flagging to drive sustainable innovations, Bus. Strateg. Environ., 20 (2011), 394-407.  doi: 10.1002/bse.700.  Google Scholar

[7]

J. Atanassov, V. Nanda and A. Seru, Finance and innovation: The case of publicly listed firms, Unpublished working paper. University of Oregon, Georgia State of Technology, and University of Chicago. Google Scholar

[8]

R. Baeriswyl and C. Cornand, The distortionary effect of monetary policy: Credit expansion vs. lump-sum transfers in the lab, B. E. J. Macroecono., 18 (2018), 1-30.   Google Scholar

[9]

J. Barney, Firm resources and sustained competitive advantage, J. Manag., 17 (1991), 99-120.  doi: 10.1016/S0742-3322(00)17018-4.  Google Scholar

[10]

F. BasrawiT. K. IbrahimK. Habib and T. Yamada, Effect of operation strategies on the economic and environmental performance of a micro gas turbine trigeneration system in a tropical region, Energy, 97 (2016), 262-272.  doi: 10.1016/j.energy.2015.12.117.  Google Scholar

[11]

W. J. Baumol, The Free-Market Innovation Machine: Analyzing the Growth Miracle of Capitalism, Princeton University Press, 2002. doi: 10.1515/9781400851638.  Google Scholar

[12]

L. BenfratelloF. Schiantarelli and A. Sembenelli, Banks and innovation: Microeconometric evidence on Italian firms, J. Financ. Econ., 90 (2008), 197-217.  doi: 10.1016/j.jfineco.2008.01.001.  Google Scholar

[13]

P. BerroneA. FosfuriL. Gelabert and L. R. Gomez-Mejia, Necessity as the mother of "green" inventions: Institutional pressures and environmental innovations, Strateg. Manage. J., 34 (2013), 891-909.  doi: 10.1002/smj.2041.  Google Scholar

[14]

A. Bitat, Environmental regulation and eco-innovation: The porter hypothesis refined, Eurasian Bus. Rev., 8 (2018), 299-321.  doi: 10.1007/s40821-017-0084-6.  Google Scholar

[15]

P. BoltonH. Chen and N. Wang, A unified theory of Tobin's q, corporate investment, financing, and risk management, J. Financ., 66 (2011), 1545-1578.  doi: 10.3386/w14845.  Google Scholar

[16]

M. B. BossleM. D. de BarcellosL. M. Vieira and L. Sauvée, The drivers for adoption of eco-innovation, J. Clean Prod., 113 (2016), 861-872.  doi: 10.1016/j.jclepro.2015.11.033.  Google Scholar

[17]

W. Cai and G. Li, The drivers of eco-innovation and its impact on performance: Evidence from China, J. Clean Prod., 176 (2018), 110-118.  doi: 10.1016/j.jclepro.2017.12.109.  Google Scholar

[18]

W. Cai and X. Zhou, On the drivers of eco-innovation: Empirical evidence from China, J. Clean Prod., 79 (2014), 239-248.  doi: 10.1016/j.jclepro.2014.05.035.  Google Scholar

[19]

L. M. CamposD. A. de Melo HeizenM. A. Verdinelli and P. A. C. Miguel, Environmental performance indicators: A study on iso 14001 certified companies, J. Clean Prod., 99 (2015), 286-296.  doi: 10.1016/j.jclepro.2015.03.019.  Google Scholar

[20]

J. Carrillo-HermosillaP. Del Río and T. Könnölä, Diversity of eco-innovations: Reflections from selected case studies, J. Clean Prod., 18 (2010), 1073-1083.  doi: 10.1016/j.jclepro.2010.02.014.  Google Scholar

[21]

W. Chen and Z. Hu, Using evolutionary game theory to study governments and manufacturers' behavioral strategies under various carbon taxes and subsidies, J. Clean Prod., 201 (2018), 123-141.  doi: 10.1016/j.jclepro.2018.08.007.  Google Scholar

[22]

C. ChengY. Hua and D. Tan, Spatial dynamics and determinants of sustainable finance: Evidence from venture capital investment in China, J. Clean Prod., 232 (2019), 1148-1157.  doi: 10.1016/j.jclepro.2019.05.360.  Google Scholar

[23]

C. C. ChengC. Yang and C. Sheu, The link between eco-innovation and business performance: A Taiwanese industry context, J. Clean Prod., 64 (2014), 81-90.  doi: 10.1016/j.jclepro.2013.09.050.  Google Scholar

[24]

G. ContrerasJ. W. Bos and S. Kleimeier, Self-regulation in sustainable finance: The adoption of the equator principles, World Dev., 122 (2019), 306-324.  doi: 10.1016/j.worlddev.2019.05.030.  Google Scholar

[25]

M. C. CuervaÁ. Triguero-Cano and D. Córcoles, Drivers of green and non-green innovation: Empirical evidence in low-tech smes, J. Clean Prod., 68 (2014), 104-113.  doi: 10.1016/j.jclepro.2013.10.049.  Google Scholar

[26]

S. R. Das, The surprise element: Jumps in interest rates, J. Econom., 106 (2002), 27-65.  doi: 10.1016/S0304-4076(01)00085-9.  Google Scholar

[27]

M. D. Delis and G. P. Kouretas, Interest rates and bank risk-taking, J. Bank Financ., 35 (2011), 840-855.  doi: 10.1016/j.jbankfin.2010.09.032.  Google Scholar

[28]

M. FingerI. Gavious and R. Manos, Environmental risk management and financial performance in the banking industry: A cross-country comparison, J. Int. Financ. Mark. Institut. Money, 52 (2018), 240-261.  doi: 10.1016/j.intfin.2017.09.019.  Google Scholar

[29]

D. Friedman, Evolutionary games in economics, Econometrica, 59 (1991), 637-666.  doi: 10.2307/2938222.  Google Scholar

[30]

D. Friedman, On economic applications of evolutionary game theory, J. Evol. Econ., 8 (1998), 15-43.  doi: 10.1007/s001910050054.  Google Scholar

[31]

C. Fussler and P. James, Eco-innovation: A breakthrough discipline for innovation and sustainability, Pitman: London, 1996. Google Scholar

[32]

E. M. García-GraneroL. Piedra-Muñoz and E. Galdeano-Gómez, Eco-innovation measurement: A review of firm performance indicators, J. Clean Prod., 191 (2018), 304-317.   Google Scholar

[33]

C. Ghisetti and K. Rennings, Environmental innovations and profitability: How does it pay to be green? An empirical analysis on the German innovation survey, J. Clean Prod., 75 (2014), 106-117.  doi: 10.1016/j.jclepro.2014.03.097.  Google Scholar

[34]

F. HeX. MiaoC. W. Wong and S. Lee, Contemporary corporate eco-innovation research: A systematic review, J. Clean Prod., 174 (2018), 502-526.  doi: 10.1016/j.jclepro.2017.10.314.  Google Scholar

[35]

L. HeL. ZhangZ. ZhongD. Wang and F. Wang, Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China, J. Clean Prod., 208 (2019), 363-372.  doi: 10.1016/j.jclepro.2018.10.119.  Google Scholar

[36]

A. M. Herrera and R. Minetti, Informed finance and technological change: Evidence from credit relationships, J. Financ. Econ., 83 (2007), 223-269.  doi: 10.2139/ssrn.539782.  Google Scholar

[37]

J. Hojnik and M. Ruzzier, The driving forces of process eco-innovation and its impact on performance: Insights from Slovenia, J. Clean Prod., 133 (2016), 812-825.  doi: 10.1016/j.jclepro.2016.06.002.  Google Scholar

[38]

P. HsuX. Tian and Y. Xu, Financial development and innovation: Cross-country evidence, J. Financ. Econ., 112 (2014), 116-135.   Google Scholar

[39]

O. Jaeggi, G. W. Ziero, J. Tobin-de la Puente and J. F. Kölbel, Understanding sustainable finance, Positive Impact Investing, Springer, 2018, 39-63. doi: 10.1007/978-3-319-10118-7_3.  Google Scholar

[40]

K. JiangD. YouR. Merrill and Z. Li, Implementation of a multi-agent environmental regulation strategy under Chinese fiscal decentralization: An evolutionary game theoretical approach, J. Clean Prod., 214 (2019), 902-915.  doi: 10.1016/j.jclepro.2018.12.252.  Google Scholar

[41]

D. Jin and N. Mengqi, The paradox of green credit in China, Energy Procedia, 5 (2011), 1979-1986.  doi: 10.1016/j.egypro.2011.03.340.  Google Scholar

[42]

E. KarakayaA. Hidalgo and C. Nuur, Diffusion of eco-innovations: A review, Renew. Sust. Energ. Rev., 33 (2014), 392-399.  doi: 10.1016/j.rser.2014.01.083.  Google Scholar

[43]

R. Kemp and M. Volpi, The diffusion of clean technologies: A review with suggestions for future diffusion analysis, J. Clean Prod., 16 (2008), 14-21.  doi: 10.1016/j.jclepro.2007.10.019.  Google Scholar

[44]

T. Kuo and S. Smith, A systematic review of technologies involving eco-innovation for enterprises moving towards sustainability, J. Clean Prod., 192 (2018), 207-220.  doi: 10.1016/j.jclepro.2018.04.212.  Google Scholar

[45]

L. LaevenR. Levine and S. Michalopoulos, Financial innovation and endogenous growth, J. Financ. Intermed., 24 (2015), 1-24.   Google Scholar

[46]

T. Lagoarde-Segot, Diversifying finance research: From financialization to sustainability, Int. Rev. Financ. Anal., 39 (2015), 1-6.  doi: 10.1016/j.irfa.2015.01.004.  Google Scholar

[47]

T. Lagoarde-Segot, Sustainable finance. A critical realist perspective, Res. Int. Bus. Financ., 47 (2019), 1-9.  doi: 10.1016/j.ribaf.2018.04.010.  Google Scholar

[48]

A. LaschiE. Marchi and S. González-García, Environmental performance of wood pellets' production through life cycle analysis, Energy, 103 (2016), 469-480.  doi: 10.1016/j.energy.2016.02.165.  Google Scholar

[49]

J. LernerM. Sorensen and P. Strömberg, Private equity and long-run investment: The case of innovation, J. Financ., 66 (2011), 445-477.  doi: 10.3386/w14623.  Google Scholar

[50]

C. LiF. ZhangC. CaoY. Liu and T. Qu, Organizational coordination in sustainable humanitarian supply chain: An evolutionary game approach, J. Clean Prod., 219 (2019), 291-303.  doi: 10.1016/j.jclepro.2019.01.233.  Google Scholar

[51]

R. Li and R. Ramanathan, Exploring the relationships between different types of environmental regulations and environmental performance: Evidence from China, J. Clean Prod., 196 (2018), 1329-1340.  doi: 10.1016/j.jclepro.2018.06.132.  Google Scholar

[52]

J. LiuY. XiaY. FanS. Lin and J. Wu, Assessment of a green credit policy aimed at energy-intensive industries in china based on a financial cge model, J. Clean Prod., 163 (2017), 293-302.  doi: 10.1016/j.jclepro.2015.10.111.  Google Scholar

[53]

X. LiuE. Wang and D. Cai, Green credit policy, property rights and debt financing: Quasi-natural experimental evidence from China, Financ. Res. Lett., 29 (2019), 129-135.  doi: 10.1016/j.frl.2019.03.014.  Google Scholar

[54]

A. MarconJ. F. de Medeiros and J. L. D. Ribeiro, Innovation and environmentally sustainable economy: Identifying the best practices developed by multinationals in Brazil, J. Clean Prod., 160 (2017), 83-97.  doi: 10.1016/j.jclepro.2017.02.101.  Google Scholar

[55]

J. Murphy and A. Gouldson, Environmental policy and industrial innovation: Integrating environment and economy through ecological modernisation, Geoforum, 31 (2000), 33-44.  doi: 10.1016/S0016-7185(99)00042-1.  Google Scholar

[56]

Y. NakaoA. AmanoK. MatsumuraK. Genba and M. Nakano, Relationship between environmental performance and financial performance: An empirical analysis of japanese corporations, Bus. Strateg. Environ., 16 (2007), 106-118.  doi: 10.1002/bse.476.  Google Scholar

[57]

R. NidumoluC. K. Prahalad and M. R. Rangaswami, Why sustainability is now the key driver of innovation, Harv. Bus. Rev., 87 (2009), 57-64.   Google Scholar

[58]

X. Peng and Y. Liu, Behind eco-innovation: Managerial environmental awareness and external resource acquisition, J. Clean Prod., 139 (2016), 347-360.  doi: 10.1016/j.jclepro.2016.08.051.  Google Scholar

[59]

R. H. Peters and L. A. Taylor, Intangible capital and the investment-q relation, J. Financ. Econ., 123 (2017), 251-272.   Google Scholar

[60]

M. ProkopczukS. T. RachevG. Schindlmayr and S. Trück, Quantifying risk in the electricity business: A raroc-based approach, Energy Econ., 29 (2007), 1033-1049.  doi: 10.1016/j.eneco.2006.08.006.  Google Scholar

[61]

J. QianP. E. Strahan and Z. Yang, The impact of incentives and communication costs on information production and use: Evidence from bank lending, J. Financ., 70 (2015), 1457-1493.  doi: 10.1111/jofi.12251.  Google Scholar

[62]

M. RabertoB. OzelL. PontaA. Teglio and S. Cincotti, From financial instability to green finance: The role of banking and credit market regulation in the eurace model, J. Evol. Econ., 29 (2019), 429-465.  doi: 10.1007/s00191-018-0568-2.  Google Scholar

[63]

K. Rennings, Redefining innovation-Eco-innovation research and the contribution from ecological economics, Ecol. Econ., 32 (2000), 319-332.  doi: 10.1016/S0921-8009(99)00112-3.  Google Scholar

[64]

S. ScarpelliniL. M. Marín-VinuesaP. Portillo-Tarragona and J. M. Moneva, Defining and measuring different dimensions of financial resources for business eco-innovation and the influence of the firms' capabilities, J. Clean Prod., 204 (2018), 258-269.  doi: 10.1016/j.jclepro.2018.08.320.  Google Scholar

[65]

B. Scholtens and L. Dam, Banking on the equator. Are banks that adopted the equator principles different from non-adopters?, World Dev., 35 (2007), 1307-1328.  doi: 10.1016/j.worlddev.2006.10.013.  Google Scholar

[66]

A. SmithP. Voss Jan and J. Grin, Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges, Res. Policy, 39 (2010), 435-448.  doi: 10.1016/j.respol.2010.01.023.  Google Scholar

[67]

N. M. Stoughton and J. Zechner, Optimal capital allocation using raroc(tm) and eva, J. Financ. Intermed., 16 (2007), 312-342.   Google Scholar

[68]

Q. Sun and M. Z. Xiaolan, Financing intangible capital, J. Financ. Intermed., 133 (2019), 564-588.   Google Scholar

[69]

D. D. Thomakos and T. A. Alexopoulos, Carbon intensity as a proxy for environmental performance and the informational content of the epi, Energy Policy, 94 (2016), 179-190.  doi: 10.1016/j.enpol.2016.03.030.  Google Scholar

[70]

P. Tian and B. Lin, Impact of financing constraints on firm's environmental performance: Evidence from China with survey data, J. Clean Prod., 217 (2019), 432-439.  doi: 10.1016/j.jclepro.2019.01.209.  Google Scholar

[71]

C. TrumppJ. EndrikatC. Zopf and E. Guenther, Definition, conceptualization, and measurement of corporate environmental performance: A critical examination of a multidimensional construct, J. Bus. Ethics, 126 (2015), 185-204.  doi: 10.1007/s10551-013-1931-8.  Google Scholar

[72]

M. TsengR. WangA. S. ChiuY. Geng and Y. H. Lin, Improving performance of green innovation practices under uncertainty, J. Clean Prod., 40 (2013), 71-82.  doi: 10.1016/j.jclepro.2011.10.009.  Google Scholar

[73]

C. TumeleroR. Sbragia and S. Evans, Cooperation in r & d and eco-innovations: The role in companies' socioeconomic performance, J. Clean Prod., 207 (2019), 1138-1149.  doi: 10.1016/j.jclepro.2018.09.146.  Google Scholar

[74]

C. WangP. NieD. Peng and Z. Li, Green insurance subsidy for promoting clean production innovation, J. Clean Prod., 148 (2017), 111-117.  doi: 10.1016/j.jclepro.2017.01.145.  Google Scholar

[75]

M. Warusawitharana, Research and development, profits, and firm value: A structural estimation, Quant. Econ., 6 (2015), 531-565.  doi: 10.3982/QE282.  Google Scholar

[76]

A. F. XavierR. M. NaveiroA. Aoussat and T. Reyes, Systematic literature review of eco-innovation models: Opportunities and recommendations for future research, J. Clean Prod., 149 (2017), 1278-1302.  doi: 10.1016/j.jclepro.2017.02.145.  Google Scholar

[77]

D. YangZ. ChenY. Yang and P. Nie, Green financial policies and capital flows, Physica A, 522 (2019), 135-146.  doi: 10.1016/j.physa.2019.01.126.  Google Scholar

[78]

B. ZhangY. Yang and J. Bi, Tracking the implementation of green credit policy in China: Top-down perspective and bottom-up reform, J. Environ. Manage., 92 (2011), 1321-1327.  doi: 10.1016/j.jenvman.2010.12.019.  Google Scholar

Figure 1.  Path of credits to provide benefits
Figure 2.  Game matrix
Figure 3.  Impacts of $ \alpha $ and $ \beta $ on $ X_{2} $ when $ \varepsilon = J $. Evolution stability constraint $ X_{2} $ increases with the increase of the bank's environmental preference $ \alpha $ and the enterprise's environmental preference $ \beta $. The figure shows that some space remains where $ X_{2}>0 $ if $ \varepsilon>J $ with the increase in $ \alpha $ and $ \beta $
Figure 4.  Impacts of $ \alpha $ and $ \beta $ on $ r. $ The green surface denotes the optimal interest rate of EOGC, and the red surface denotes the optimal interest rate of the traditional credit. The figure shows the change in the optimal interest rate of different credits with respect to environmental preferences
Figure 5.  Impacts of $ \alpha $ and $ \beta $ on $ \frac{I}{K} . $ The green surface denotes the ratio of the optimal credit line to the enterprise capital under EOGC, $ \frac{I_{g}^{*}}{K}, $ and the red surface denotes the ratio of the optimal credit line to the enterprise capital under the traditional credit, $ \frac{I_{o}^{*}}{K} . $ The figure shows that the credit line of EOGC changes with the environmental preference, and the credit line of the traditional credit does not
Figure 6.  Impacts of $ \alpha $ and $ \beta $ on $ \frac{I_{ {ina}}^{*}}{I_{ {fia}}^{*}} . $ The green surface denotes the optimal eco-innovation investment ratio of intangible assets to fixed assets when $ \eta_{i n a} = 0.1, $ the red surface is the optimal ratio when $ \eta_{i n a} = 0.5, $ and the yellow surface is the optimal ratio when $ \eta_{i n a} = 0.8, $ with the condition of $ \eta_{fi a} = 0.3 . $ The figure shows that the impacts of $ \alpha $ and $ \beta $ on $ \frac{I_{ {ina}}^{*}}{I_{ {fia}}^{*}} $ change with the environmental benefit-cost ratio of intangible assets
Figure 7.  Impacts of $ \eta_{ {ina}} $ and $ \eta_{ {fia}} $ on $ X_{2} $ when $ \varepsilon = J $. The green surface denotes the evolution stability constraint $ X_{2} $ when $ \beta = 0.7, $ the red surface denotes $ X_{2} $ when $ \beta = 0.5, $ and the yellow surface denotes $ X_{2} $ when $ \beta = 0.2, $ with the condition of $ \alpha = 0.3 . $ The figure shows that some space remains where $ X_{2}>0 $ if $ \varepsilon>J $ with the increase in $ \eta_{i n a} $ and $ \eta_{f i a}, $ and the impact of $ \eta_{ {ina}} $ is greater than that of $ \eta_{ {fia}} $
Figure 8.  Impacts of $ \eta_{i n a} $ and $ \eta_{fi a} $ on $ \frac{I_{i n a}^{*}}{I_{f i a}^{*}} . $ The green surface denotes the optimal eco-innovation investment ratio of intangible assets to fixed assets when $ \beta = 0.7, $ the red surface denotes the optimal investment ratio when $ \beta = 0.5, $ and the yellow surface denotes the optimal investment ratio when $ \beta = 0.2, $ with the condition of $ \alpha = 0.3 . $ The figure shows that the impacts of the environmental benefit-cost ratios on the optimal eco-innovation investment ratio of intangible assets to fixed assets change with the enterprise's environmental preference
Figure 9.  Impacts of EOGC on the bank's economic benefits. The green surface denotes the bank's economic benefits under EOGC, and the red surface denotes the bank's economic benefits under the traditional credit. The values of the bank's environmental preference $ \alpha $ and the enterprise's environmental preference $ \beta $ in the figure are 0.1, 0.3, and 0.6, respectively. The figure shows that the bank's economic benefits under EOGC change with the environmental preferences and differ from that of traditional credit
Figure 10.  Impacts of EOGC on the enterprise's economic benefits. The green surface denotes the enterprise's economic benefits growth caused by eco-innovation under EOGC, the red surface denotes the enterprise's economic benefits growth caused by the other activities under the traditional credit, and the yellow surface denotes the enterprise's economic benefits growth caused by eco-innovation under the traditional credit. The values of the bank's environmental preference $ \alpha $ and the enterprise's environmental preference $ \beta $ in the figure are 0.1, 0.3, and 0.6, respectively. The figure shows the change of the enterprise's economic benefits with the environmental preferences under EOGC
Table 1.  Comparison oftypes of credit
types traditional credit EOGC
characteristics ordinary credit IOGC
credit object pollution industries ×
general industries ×
green industries
guidance market means ×
administrative means × ×
credit standards maximum economic benefits ×
maximum comprehensive benefits × ×
loans usage activity with the greatest return on investment ×
eco-innovation × ×
types traditional credit EOGC
characteristics ordinary credit IOGC
credit object pollution industries ×
general industries ×
green industries
guidance market means ×
administrative means × ×
credit standards maximum economic benefits ×
maximum comprehensive benefits × ×
loans usage activity with the greatest return on investment ×
eco-innovation × ×
Table 2.  Variables and parameters
Notation Definition
Variables $ B $ comprehensive benefits of the bank
$ R $ economic benefits of the bank
$ F $ comprehensive benefits of the enterprise
$ V $ economic benefits of the enterprise
$ M $ environmental benefits
$ I $ credit line
$ r $ interest rate
Parameters $ \alpha $ environmental preferences of the bank
$ \beta $ environmental preferences of the enterprise
$ \eta $ environmental benefit-cost ratio
$ q $ Tobin's Q
$ d $ credit risk
$ \rho $ adjustment cost parameter
$ J $ return on capital of eco-innovation
$ \varepsilon $ return on capital of the other activities
$ K $ enterprise capital
$ \tau $ discount rate
Indexes $ fna $ intangible assets of the enterprise
$ fia $ fixed assets of the enterprise
$ o $ traditional credits
$ g $ EOGC
$ t $ time
Notation Definition
Variables $ B $ comprehensive benefits of the bank
$ R $ economic benefits of the bank
$ F $ comprehensive benefits of the enterprise
$ V $ economic benefits of the enterprise
$ M $ environmental benefits
$ I $ credit line
$ r $ interest rate
Parameters $ \alpha $ environmental preferences of the bank
$ \beta $ environmental preferences of the enterprise
$ \eta $ environmental benefit-cost ratio
$ q $ Tobin's Q
$ d $ credit risk
$ \rho $ adjustment cost parameter
$ J $ return on capital of eco-innovation
$ \varepsilon $ return on capital of the other activities
$ K $ enterprise capital
$ \tau $ discount rate
Indexes $ fna $ intangible assets of the enterprise
$ fia $ fixed assets of the enterprise
$ o $ traditional credits
$ g $ EOGC
$ t $ time
Table 3.  Evolutionary stability conditions
Scenarios Points $ \operatorname{det} T $ $ \operatorname{tr} T $ Equilibrium results Stability conditions
I (0, 0) $ + $ $ + $ instability point
(0, 1) $ - $ $ \pm $ saddle point $ B_{1}>B_{2} $
(1, 0) $ - $ $ \pm $ saddle point $ F_{1}>F_{3} $
(1, 1) $ + $ $ - $ ESS
II (0, 0) $ - $ $ \pm $ saddle point
(0, 1) $ + $ $ - $ ESS $ B_{2}>B_{1} $
(1, 0) $ + $ $ + $ instability point $ F_{2}>F_{4} $
(1, 1) $ - $ $ \pm $ saddle point
III (0, 0) $ - $ $ \pm $ saddle point
(0, 1) $ + $ $ + $ instability point $ B_{3}>B_{4} $
(1, 0) $ + $ $ - $ ESS $ F_{3}>F_{1} $
(1, 1) $ - $ $ \pm $ saddle point
IV (0, 0) $ + $ $ - $ ESS
(0, 1) $ - $ $ \pm $ saddle point $ B_{4}>B_{3} $
(1, 0) $ - $ $ \pm $ saddle point $ F_{4}>F_{2} $
(1, 1) $ + $ $ + $ instability point
Scenarios Points $ \operatorname{det} T $ $ \operatorname{tr} T $ Equilibrium results Stability conditions
I (0, 0) $ + $ $ + $ instability point
(0, 1) $ - $ $ \pm $ saddle point $ B_{1}>B_{2} $
(1, 0) $ - $ $ \pm $ saddle point $ F_{1}>F_{3} $
(1, 1) $ + $ $ - $ ESS
II (0, 0) $ - $ $ \pm $ saddle point
(0, 1) $ + $ $ - $ ESS $ B_{2}>B_{1} $
(1, 0) $ + $ $ + $ instability point $ F_{2}>F_{4} $
(1, 1) $ - $ $ \pm $ saddle point
III (0, 0) $ - $ $ \pm $ saddle point
(0, 1) $ + $ $ + $ instability point $ B_{3}>B_{4} $
(1, 0) $ + $ $ - $ ESS $ F_{3}>F_{1} $
(1, 1) $ - $ $ \pm $ saddle point
IV (0, 0) $ + $ $ - $ ESS
(0, 1) $ - $ $ \pm $ saddle point $ B_{4}>B_{3} $
(1, 0) $ - $ $ \pm $ saddle point $ F_{4}>F_{2} $
(1, 1) $ + $ $ + $ instability point
Table 4.  Optimal interest rates and credit lines
Scenarios Optimal interest rates Optimal credit lines
I $ \frac{1}{2}(q+d)+\frac{\tau\left(\eta_{{ina}} \rho_{\text {fia}}+\eta_{{fia}} \rho_{{ina}}\right)}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)}\left(\frac{\beta}{1-\beta}-\frac{\alpha}{1-\alpha}\right) $ $ \frac{K\left(\rho_{{ina}}+\rho_{{fia}}\right)}{2 \rho_{{ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{{fia}}+\eta_{ {fia}} \rho_{ {ina}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}\left(\frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta}\right) $
II $ \frac{1}{2}(q+d)+\frac{\tau\left(\eta_{{ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{{ina}}\right) \beta}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)(1-\beta)} $ $ \frac{K\left(\rho_{{ina}}+\rho_{{fia}}\right)}{2 \rho_{{ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{ {ina}}\right) \beta}{2 \rho_{{ina}} \rho_{{fia}}(1-\beta)} $
III $ \frac{1}{2}(q+d)-\frac{\tau\left(\eta_{{ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{{ina}}\right) \alpha}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)(1-\alpha)} $ $ \frac{K\left(\rho_{{ina}}+\rho_{ {fia}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{ {fia}}+\eta_{ {fia}} \rho_{ {ina}}\right) \alpha}{2 \rho_{ {ina}} \rho_{ {fia}}(1-\alpha)} $
IV $ \frac{1}{2}(q+d) $ $ \frac{K\left(\rho_{ {ina}}+\rho_{ {fia}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}(q-d) $
Scenarios Optimal interest rates Optimal credit lines
I $ \frac{1}{2}(q+d)+\frac{\tau\left(\eta_{{ina}} \rho_{\text {fia}}+\eta_{{fia}} \rho_{{ina}}\right)}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)}\left(\frac{\beta}{1-\beta}-\frac{\alpha}{1-\alpha}\right) $ $ \frac{K\left(\rho_{{ina}}+\rho_{{fia}}\right)}{2 \rho_{{ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{{fia}}+\eta_{ {fia}} \rho_{ {ina}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}\left(\frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta}\right) $
II $ \frac{1}{2}(q+d)+\frac{\tau\left(\eta_{{ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{{ina}}\right) \beta}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)(1-\beta)} $ $ \frac{K\left(\rho_{{ina}}+\rho_{{fia}}\right)}{2 \rho_{{ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{ {ina}}\right) \beta}{2 \rho_{{ina}} \rho_{{fia}}(1-\beta)} $
III $ \frac{1}{2}(q+d)-\frac{\tau\left(\eta_{{ina}} \rho_{{fia}}+\eta_{{fia}} \rho_{{ina}}\right) \alpha}{2\left(\rho_{{ina}}+\rho_{{fia}}\right)(1-\alpha)} $ $ \frac{K\left(\rho_{{ina}}+\rho_{ {fia}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}(q-d)+\frac{\tau K\left(\eta_{ {ina}} \rho_{ {fia}}+\eta_{ {fia}} \rho_{ {ina}}\right) \alpha}{2 \rho_{ {ina}} \rho_{ {fia}}(1-\alpha)} $
IV $ \frac{1}{2}(q+d) $ $ \frac{K\left(\rho_{ {ina}}+\rho_{ {fia}}\right)}{2 \rho_{ {ina}} \rho_{ {fia}}}(q-d) $
[1]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[2]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[4]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[5]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[6]

Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021090

[7]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[8]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[9]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[10]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[11]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[12]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[13]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[14]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[15]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036

[16]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[17]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[18]

Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839-854. doi: 10.3934/mbe.2009.6.839

[19]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[20]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (68)
  • HTML views (229)
  • Cited by (0)

Other articles
by authors

[Back to Top]