doi: 10.3934/jimo.2021032

The finite-time ruin probability of a risk model with a general counting process and stochastic return

1. 

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China

2. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China

* Corresponding author: Kaiyong Wang

Received  July 2020 Revised  December 2020 Published  February 2021

This paper considers a general risk model with stochastic return and a Brownian perturbation, where the claim arrival process is a general counting process and the price process of the investment portfolio is expressed as a geometric Lévy process. When the claim sizes are pairwise strong quasi-asymptotically independent random variables with heavy-tailed distributions, the asymptotics of the finite-time ruin probability of this risk model have been obtained.

Citation: Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021032
References:
[1]

A. V. AsimitE. FurmanQ. Tang and R. Vernic, Asymptotics for risk capital allocations based on conditional tail expectation, Insurance: Mathematics and Economics, 49 (2011), 310-324.  doi: 10.1016/j.insmatheco.2011.05.002.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

H. W. BlockT. H. Savits and M. Shaked, Some concepts of negative dependence, Annals of Probability, 10 (1982), 765-772.  doi: 10.1214/aop/1176993784.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Communications in Statistics A—Theory Methods, 10 (1981), 307-337.  doi: 10.1080/03610928108828041.  Google Scholar

[6]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.  Google Scholar

[7]

S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distribution, 2$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[8]

K.-A. Fu, On joint ruin probability for a bidimensional Lévy-driven risk model with stochastic returns and heavy-tailed claims, Journal of Mathematical Analysis and Applications, 442 (2016), 17-30.  doi: 10.1016/j.jmaa.2016.04.042.  Google Scholar

[9]

K.-A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

K. Fu and C. Yu, On a two-dimensional risk model with time-dependent claim sizes and risky investments, Journal of Computational and Applied Mathematics, 344 (2018), 367-380.  doi: 10.1016/j.cam.2018.05.043.  Google Scholar

[11]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Statistics and Probability Letters, 83 (2013), 1527-1538.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[12]

J. Geluk and Q. Tang, Asymptotic tail probabilities of sums of dependent subexponential random variables, Journal of Theoretical Probability, 22 (2009), 871-882.  doi: 10.1007/s10959-008-0159-5.  Google Scholar

[13]

C. Klüppelberg, Subexponential distribution and integrated tails, Journal of Applied Probability, 25 (1998), 132-141.  doi: 10.2307/3214240.  Google Scholar

[14]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[15]

J. Li, On pairwise quasi-asymptotically independent random variables and their applications, Statistics and Probability Letters, 83 (2013), 2081-2087.  doi: 10.1016/j.spl.2013.05.023.  Google Scholar

[16]

J. Li, Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return, Insurance: Mathematics and Economics, 71 (2016), 195-204.  doi: 10.1016/j.insmatheco.2016.09.003.  Google Scholar

[17]

J. Li, A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation, Statistics and Probability Letters, 127 (2017), 49-55.  doi: 10.1016/j.spl.2017.03.028.  Google Scholar

[18]

X. LiuQ. Gao and Y. Wang, A note on a dependent risk model with constant interest rate, Statistics and Probability Letters, 82 (2012), 707-712.  doi: 10.1016/j.spl.2011.12.016.  Google Scholar

[19]

Y. MaoK. WangL. Zhu and Y. Ren, Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 34 (2017), 243-252.  doi: 10.1007/s13160-017-0245-0.  Google Scholar

[20]

K. Maulik and S. Resnick, Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.  doi: 10.1007/s10687-004-4728-4.  Google Scholar

[21]

J. Peng and D. Wang, Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns, Journal of Industrial and Management Optimization, 13 (2017), 155-185.  doi: 10.3934/jimo.2016010.  Google Scholar

[22]

J. Peng and D. Wang, Uniform asymptotics for ruin probabilities in a dependent renewal risk model with stochastic return on investments, Stochastics: An International Journal of Probability and Stochastic Processes, 90 (2018), 432-471.  doi: 10.1080/17442508.2017.1365077.  Google Scholar

[23]

V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, American Mathematical Society, Providence, Rhode Island, 1996. doi: 10.1090/mmono/148.  Google Scholar

[24]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[25]

S. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5 (2002), 303-336.  doi: 10.1023/A:1025148622954.  Google Scholar

[26]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Processes and Their Applications, 108 (2003), 299-325.  doi: 10.1016/j.spa.2003.07.001.  Google Scholar

[27]

Q. TangG. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance: Mathematics and Economics, 46 (2010), 362-370.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[28]

Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes, 17 (2014), 467-393.  doi: 10.1007/s10687-014-0191-z.  Google Scholar

[29]

D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stochastic Models, 24 (2008), 41-57.  doi: 10.1080/15326340701826898.  Google Scholar

[30]

K. WangY. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodology and Computing in Applied Probability, 15 (2013), 109-124.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[31]

K. WangL. ChenY. Yang and M. Gao, The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 1173-1189.  doi: 10.1007/s13160-018-0321-0.  Google Scholar

[32]

K. Wang, Y. Cui and Y. Mao, Estimates for the finite-time ruin probability of a time-dependent risk model with a Brownian perturbation, Mathematical Problems in Engineering, 2020, Art. ID 7130243, 5 pp. doi: 10.1155/2020/7130243.  Google Scholar

[33]

Y. WangZ. CuiK. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[34]

Y. Yang and E. Hashorva, Extremes and products of multivariate AC-product risks, Insurance: Mathematics and Economics, 52 (2013), 312-319.  doi: 10.1016/j.insmatheco.2013.01.005.  Google Scholar

[35]

Y. YangK. Wang and D. G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 51 (2014), 669-684.  doi: 10.1239/jap/1409932666.  Google Scholar

[36]

Y. YangK. WangJ. Liu and Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, Journal of Industrial and Management Optimization, 15 (2019), 481-505.  doi: 10.3934/jimo.2018053.  Google Scholar

[37]

Y. YangZ. ZhangT. Jiang and D. Cheng, Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return, Journal of Computational and Applied Mathematics, 287 (2015), 32-43.  doi: 10.1016/j.cam.2015.03.020.  Google Scholar

[38]

Y. Zhang and W. Wang, Ruin probabilities of a bidimensional risk model with investment, Statistics and Probability Letters, 82 (2012), 130-138.  doi: 10.1016/j.spl.2011.09.010.  Google Scholar

show all references

References:
[1]

A. V. AsimitE. FurmanQ. Tang and R. Vernic, Asymptotics for risk capital allocations based on conditional tail expectation, Insurance: Mathematics and Economics, 49 (2011), 310-324.  doi: 10.1016/j.insmatheco.2011.05.002.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

H. W. BlockT. H. Savits and M. Shaked, Some concepts of negative dependence, Annals of Probability, 10 (1982), 765-772.  doi: 10.1214/aop/1176993784.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Communications in Statistics A—Theory Methods, 10 (1981), 307-337.  doi: 10.1080/03610928108828041.  Google Scholar

[6]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.  Google Scholar

[7]

S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distribution, 2$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[8]

K.-A. Fu, On joint ruin probability for a bidimensional Lévy-driven risk model with stochastic returns and heavy-tailed claims, Journal of Mathematical Analysis and Applications, 442 (2016), 17-30.  doi: 10.1016/j.jmaa.2016.04.042.  Google Scholar

[9]

K.-A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

K. Fu and C. Yu, On a two-dimensional risk model with time-dependent claim sizes and risky investments, Journal of Computational and Applied Mathematics, 344 (2018), 367-380.  doi: 10.1016/j.cam.2018.05.043.  Google Scholar

[11]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Statistics and Probability Letters, 83 (2013), 1527-1538.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[12]

J. Geluk and Q. Tang, Asymptotic tail probabilities of sums of dependent subexponential random variables, Journal of Theoretical Probability, 22 (2009), 871-882.  doi: 10.1007/s10959-008-0159-5.  Google Scholar

[13]

C. Klüppelberg, Subexponential distribution and integrated tails, Journal of Applied Probability, 25 (1998), 132-141.  doi: 10.2307/3214240.  Google Scholar

[14]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[15]

J. Li, On pairwise quasi-asymptotically independent random variables and their applications, Statistics and Probability Letters, 83 (2013), 2081-2087.  doi: 10.1016/j.spl.2013.05.023.  Google Scholar

[16]

J. Li, Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return, Insurance: Mathematics and Economics, 71 (2016), 195-204.  doi: 10.1016/j.insmatheco.2016.09.003.  Google Scholar

[17]

J. Li, A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation, Statistics and Probability Letters, 127 (2017), 49-55.  doi: 10.1016/j.spl.2017.03.028.  Google Scholar

[18]

X. LiuQ. Gao and Y. Wang, A note on a dependent risk model with constant interest rate, Statistics and Probability Letters, 82 (2012), 707-712.  doi: 10.1016/j.spl.2011.12.016.  Google Scholar

[19]

Y. MaoK. WangL. Zhu and Y. Ren, Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 34 (2017), 243-252.  doi: 10.1007/s13160-017-0245-0.  Google Scholar

[20]

K. Maulik and S. Resnick, Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.  doi: 10.1007/s10687-004-4728-4.  Google Scholar

[21]

J. Peng and D. Wang, Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns, Journal of Industrial and Management Optimization, 13 (2017), 155-185.  doi: 10.3934/jimo.2016010.  Google Scholar

[22]

J. Peng and D. Wang, Uniform asymptotics for ruin probabilities in a dependent renewal risk model with stochastic return on investments, Stochastics: An International Journal of Probability and Stochastic Processes, 90 (2018), 432-471.  doi: 10.1080/17442508.2017.1365077.  Google Scholar

[23]

V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, American Mathematical Society, Providence, Rhode Island, 1996. doi: 10.1090/mmono/148.  Google Scholar

[24]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[25]

S. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5 (2002), 303-336.  doi: 10.1023/A:1025148622954.  Google Scholar

[26]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Processes and Their Applications, 108 (2003), 299-325.  doi: 10.1016/j.spa.2003.07.001.  Google Scholar

[27]

Q. TangG. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance: Mathematics and Economics, 46 (2010), 362-370.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[28]

Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes, 17 (2014), 467-393.  doi: 10.1007/s10687-014-0191-z.  Google Scholar

[29]

D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stochastic Models, 24 (2008), 41-57.  doi: 10.1080/15326340701826898.  Google Scholar

[30]

K. WangY. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodology and Computing in Applied Probability, 15 (2013), 109-124.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[31]

K. WangL. ChenY. Yang and M. Gao, The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 1173-1189.  doi: 10.1007/s13160-018-0321-0.  Google Scholar

[32]

K. Wang, Y. Cui and Y. Mao, Estimates for the finite-time ruin probability of a time-dependent risk model with a Brownian perturbation, Mathematical Problems in Engineering, 2020, Art. ID 7130243, 5 pp. doi: 10.1155/2020/7130243.  Google Scholar

[33]

Y. WangZ. CuiK. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[34]

Y. Yang and E. Hashorva, Extremes and products of multivariate AC-product risks, Insurance: Mathematics and Economics, 52 (2013), 312-319.  doi: 10.1016/j.insmatheco.2013.01.005.  Google Scholar

[35]

Y. YangK. Wang and D. G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 51 (2014), 669-684.  doi: 10.1239/jap/1409932666.  Google Scholar

[36]

Y. YangK. WangJ. Liu and Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, Journal of Industrial and Management Optimization, 15 (2019), 481-505.  doi: 10.3934/jimo.2018053.  Google Scholar

[37]

Y. YangZ. ZhangT. Jiang and D. Cheng, Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return, Journal of Computational and Applied Mathematics, 287 (2015), 32-43.  doi: 10.1016/j.cam.2015.03.020.  Google Scholar

[38]

Y. Zhang and W. Wang, Ruin probabilities of a bidimensional risk model with investment, Statistics and Probability Letters, 82 (2012), 130-138.  doi: 10.1016/j.spl.2011.09.010.  Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[3]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[4]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[5]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[6]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[7]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[8]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[9]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[15]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[16]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (12)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]