doi: 10.3934/jimo.2021032

The finite-time ruin probability of a risk model with a general counting process and stochastic return

1. 

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China

2. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China

* Corresponding author: Kaiyong Wang

Received  July 2020 Revised  December 2020 Published  February 2021

This paper considers a general risk model with stochastic return and a Brownian perturbation, where the claim arrival process is a general counting process and the price process of the investment portfolio is expressed as a geometric Lévy process. When the claim sizes are pairwise strong quasi-asymptotically independent random variables with heavy-tailed distributions, the asymptotics of the finite-time ruin probability of this risk model have been obtained.

Citation: Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021032
References:
[1]

A. V. AsimitE. FurmanQ. Tang and R. Vernic, Asymptotics for risk capital allocations based on conditional tail expectation, Insurance: Mathematics and Economics, 49 (2011), 310-324.  doi: 10.1016/j.insmatheco.2011.05.002.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

H. W. BlockT. H. Savits and M. Shaked, Some concepts of negative dependence, Annals of Probability, 10 (1982), 765-772.  doi: 10.1214/aop/1176993784.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Communications in Statistics A—Theory Methods, 10 (1981), 307-337.  doi: 10.1080/03610928108828041.  Google Scholar

[6]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.  Google Scholar

[7]

S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distribution, 2$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[8]

K.-A. Fu, On joint ruin probability for a bidimensional Lévy-driven risk model with stochastic returns and heavy-tailed claims, Journal of Mathematical Analysis and Applications, 442 (2016), 17-30.  doi: 10.1016/j.jmaa.2016.04.042.  Google Scholar

[9]

K.-A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

K. Fu and C. Yu, On a two-dimensional risk model with time-dependent claim sizes and risky investments, Journal of Computational and Applied Mathematics, 344 (2018), 367-380.  doi: 10.1016/j.cam.2018.05.043.  Google Scholar

[11]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Statistics and Probability Letters, 83 (2013), 1527-1538.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[12]

J. Geluk and Q. Tang, Asymptotic tail probabilities of sums of dependent subexponential random variables, Journal of Theoretical Probability, 22 (2009), 871-882.  doi: 10.1007/s10959-008-0159-5.  Google Scholar

[13]

C. Klüppelberg, Subexponential distribution and integrated tails, Journal of Applied Probability, 25 (1998), 132-141.  doi: 10.2307/3214240.  Google Scholar

[14]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[15]

J. Li, On pairwise quasi-asymptotically independent random variables and their applications, Statistics and Probability Letters, 83 (2013), 2081-2087.  doi: 10.1016/j.spl.2013.05.023.  Google Scholar

[16]

J. Li, Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return, Insurance: Mathematics and Economics, 71 (2016), 195-204.  doi: 10.1016/j.insmatheco.2016.09.003.  Google Scholar

[17]

J. Li, A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation, Statistics and Probability Letters, 127 (2017), 49-55.  doi: 10.1016/j.spl.2017.03.028.  Google Scholar

[18]

X. LiuQ. Gao and Y. Wang, A note on a dependent risk model with constant interest rate, Statistics and Probability Letters, 82 (2012), 707-712.  doi: 10.1016/j.spl.2011.12.016.  Google Scholar

[19]

Y. MaoK. WangL. Zhu and Y. Ren, Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 34 (2017), 243-252.  doi: 10.1007/s13160-017-0245-0.  Google Scholar

[20]

K. Maulik and S. Resnick, Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.  doi: 10.1007/s10687-004-4728-4.  Google Scholar

[21]

J. Peng and D. Wang, Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns, Journal of Industrial and Management Optimization, 13 (2017), 155-185.  doi: 10.3934/jimo.2016010.  Google Scholar

[22]

J. Peng and D. Wang, Uniform asymptotics for ruin probabilities in a dependent renewal risk model with stochastic return on investments, Stochastics: An International Journal of Probability and Stochastic Processes, 90 (2018), 432-471.  doi: 10.1080/17442508.2017.1365077.  Google Scholar

[23]

V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, American Mathematical Society, Providence, Rhode Island, 1996. doi: 10.1090/mmono/148.  Google Scholar

[24]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[25]

S. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5 (2002), 303-336.  doi: 10.1023/A:1025148622954.  Google Scholar

[26]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Processes and Their Applications, 108 (2003), 299-325.  doi: 10.1016/j.spa.2003.07.001.  Google Scholar

[27]

Q. TangG. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance: Mathematics and Economics, 46 (2010), 362-370.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[28]

Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes, 17 (2014), 467-393.  doi: 10.1007/s10687-014-0191-z.  Google Scholar

[29]

D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stochastic Models, 24 (2008), 41-57.  doi: 10.1080/15326340701826898.  Google Scholar

[30]

K. WangY. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodology and Computing in Applied Probability, 15 (2013), 109-124.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[31]

K. WangL. ChenY. Yang and M. Gao, The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 1173-1189.  doi: 10.1007/s13160-018-0321-0.  Google Scholar

[32]

K. Wang, Y. Cui and Y. Mao, Estimates for the finite-time ruin probability of a time-dependent risk model with a Brownian perturbation, Mathematical Problems in Engineering, 2020, Art. ID 7130243, 5 pp. doi: 10.1155/2020/7130243.  Google Scholar

[33]

Y. WangZ. CuiK. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[34]

Y. Yang and E. Hashorva, Extremes and products of multivariate AC-product risks, Insurance: Mathematics and Economics, 52 (2013), 312-319.  doi: 10.1016/j.insmatheco.2013.01.005.  Google Scholar

[35]

Y. YangK. Wang and D. G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 51 (2014), 669-684.  doi: 10.1239/jap/1409932666.  Google Scholar

[36]

Y. YangK. WangJ. Liu and Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, Journal of Industrial and Management Optimization, 15 (2019), 481-505.  doi: 10.3934/jimo.2018053.  Google Scholar

[37]

Y. YangZ. ZhangT. Jiang and D. Cheng, Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return, Journal of Computational and Applied Mathematics, 287 (2015), 32-43.  doi: 10.1016/j.cam.2015.03.020.  Google Scholar

[38]

Y. Zhang and W. Wang, Ruin probabilities of a bidimensional risk model with investment, Statistics and Probability Letters, 82 (2012), 130-138.  doi: 10.1016/j.spl.2011.09.010.  Google Scholar

show all references

References:
[1]

A. V. AsimitE. FurmanQ. Tang and R. Vernic, Asymptotics for risk capital allocations based on conditional tail expectation, Insurance: Mathematics and Economics, 49 (2011), 310-324.  doi: 10.1016/j.insmatheco.2011.05.002.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

H. W. BlockT. H. Savits and M. Shaked, Some concepts of negative dependence, Annals of Probability, 10 (1982), 765-772.  doi: 10.1214/aop/1176993784.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Communications in Statistics A—Theory Methods, 10 (1981), 307-337.  doi: 10.1080/03610928108828041.  Google Scholar

[6]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.  Google Scholar

[7]

S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distribution, 2$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[8]

K.-A. Fu, On joint ruin probability for a bidimensional Lévy-driven risk model with stochastic returns and heavy-tailed claims, Journal of Mathematical Analysis and Applications, 442 (2016), 17-30.  doi: 10.1016/j.jmaa.2016.04.042.  Google Scholar

[9]

K.-A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

K. Fu and C. Yu, On a two-dimensional risk model with time-dependent claim sizes and risky investments, Journal of Computational and Applied Mathematics, 344 (2018), 367-380.  doi: 10.1016/j.cam.2018.05.043.  Google Scholar

[11]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Statistics and Probability Letters, 83 (2013), 1527-1538.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[12]

J. Geluk and Q. Tang, Asymptotic tail probabilities of sums of dependent subexponential random variables, Journal of Theoretical Probability, 22 (2009), 871-882.  doi: 10.1007/s10959-008-0159-5.  Google Scholar

[13]

C. Klüppelberg, Subexponential distribution and integrated tails, Journal of Applied Probability, 25 (1998), 132-141.  doi: 10.2307/3214240.  Google Scholar

[14]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[15]

J. Li, On pairwise quasi-asymptotically independent random variables and their applications, Statistics and Probability Letters, 83 (2013), 2081-2087.  doi: 10.1016/j.spl.2013.05.023.  Google Scholar

[16]

J. Li, Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return, Insurance: Mathematics and Economics, 71 (2016), 195-204.  doi: 10.1016/j.insmatheco.2016.09.003.  Google Scholar

[17]

J. Li, A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation, Statistics and Probability Letters, 127 (2017), 49-55.  doi: 10.1016/j.spl.2017.03.028.  Google Scholar

[18]

X. LiuQ. Gao and Y. Wang, A note on a dependent risk model with constant interest rate, Statistics and Probability Letters, 82 (2012), 707-712.  doi: 10.1016/j.spl.2011.12.016.  Google Scholar

[19]

Y. MaoK. WangL. Zhu and Y. Ren, Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 34 (2017), 243-252.  doi: 10.1007/s13160-017-0245-0.  Google Scholar

[20]

K. Maulik and S. Resnick, Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.  doi: 10.1007/s10687-004-4728-4.  Google Scholar

[21]

J. Peng and D. Wang, Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns, Journal of Industrial and Management Optimization, 13 (2017), 155-185.  doi: 10.3934/jimo.2016010.  Google Scholar

[22]

J. Peng and D. Wang, Uniform asymptotics for ruin probabilities in a dependent renewal risk model with stochastic return on investments, Stochastics: An International Journal of Probability and Stochastic Processes, 90 (2018), 432-471.  doi: 10.1080/17442508.2017.1365077.  Google Scholar

[23]

V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, American Mathematical Society, Providence, Rhode Island, 1996. doi: 10.1090/mmono/148.  Google Scholar

[24]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[25]

S. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5 (2002), 303-336.  doi: 10.1023/A:1025148622954.  Google Scholar

[26]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Processes and Their Applications, 108 (2003), 299-325.  doi: 10.1016/j.spa.2003.07.001.  Google Scholar

[27]

Q. TangG. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance: Mathematics and Economics, 46 (2010), 362-370.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[28]

Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes, 17 (2014), 467-393.  doi: 10.1007/s10687-014-0191-z.  Google Scholar

[29]

D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stochastic Models, 24 (2008), 41-57.  doi: 10.1080/15326340701826898.  Google Scholar

[30]

K. WangY. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodology and Computing in Applied Probability, 15 (2013), 109-124.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[31]

K. WangL. ChenY. Yang and M. Gao, The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 1173-1189.  doi: 10.1007/s13160-018-0321-0.  Google Scholar

[32]

K. Wang, Y. Cui and Y. Mao, Estimates for the finite-time ruin probability of a time-dependent risk model with a Brownian perturbation, Mathematical Problems in Engineering, 2020, Art. ID 7130243, 5 pp. doi: 10.1155/2020/7130243.  Google Scholar

[33]

Y. WangZ. CuiK. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[34]

Y. Yang and E. Hashorva, Extremes and products of multivariate AC-product risks, Insurance: Mathematics and Economics, 52 (2013), 312-319.  doi: 10.1016/j.insmatheco.2013.01.005.  Google Scholar

[35]

Y. YangK. Wang and D. G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 51 (2014), 669-684.  doi: 10.1239/jap/1409932666.  Google Scholar

[36]

Y. YangK. WangJ. Liu and Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, Journal of Industrial and Management Optimization, 15 (2019), 481-505.  doi: 10.3934/jimo.2018053.  Google Scholar

[37]

Y. YangZ. ZhangT. Jiang and D. Cheng, Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return, Journal of Computational and Applied Mathematics, 287 (2015), 32-43.  doi: 10.1016/j.cam.2015.03.020.  Google Scholar

[38]

Y. Zhang and W. Wang, Ruin probabilities of a bidimensional risk model with investment, Statistics and Probability Letters, 82 (2012), 130-138.  doi: 10.1016/j.spl.2011.09.010.  Google Scholar

[1]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[2]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[3]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[4]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[5]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[6]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[7]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Yang Yang, Kam C. Yuen, Jun-Feng Liu. Asymptotics for ruin probabilities in Lévy-driven risk models with heavy-tailed claims. Journal of Industrial & Management Optimization, 2018, 14 (1) : 231-247. doi: 10.3934/jimo.2017044

[10]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[11]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[12]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[13]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[14]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[15]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[16]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[17]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[18]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[19]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[20]

Manman Li, George Yin. Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model. Journal of Industrial & Management Optimization, 2019, 15 (2) : 517-535. doi: 10.3934/jimo.2018055

2019 Impact Factor: 1.366

Article outline

[Back to Top]