• Previous Article
    First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits
  • JIMO Home
  • This Issue
  • Next Article
    Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations
May  2022, 18(3): 1665-1688. doi: 10.3934/jimo.2021038

Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users

1. 

Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China

2. 

The Chinese University of Hong Kong(Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen, China

* Corresponding author: Xiaoyi Zhou

Received  July 2020 Revised  December 2020 Published  May 2022 Early access  March 2021

In recent years, offloading mobile traffic through Wi-Fi has emerged as a potential solution to lower down the communication cost for mobile users. Users hope to reduce the cost while keeping the delay in an acceptable range through Wi-Fi offloading. Also, different users have different sensitivities to the cost and the delay performance. How to make a proper cost-delay tradeoff according to the user's preference is the key issue in the design of the offloading strategy. To address this issue, we propose a preference-oriented offloading strategy for current commercial terminals, which transmit traffic only via one channel simultaneously. We model the strategy as a three-state M/MMSP/1 queueing system, of which the service process is a Markov modulated service process (MMSP), and obtain the structured solutions by establishing a hybrid embedded Markov chain. Our analysis shows that, given the user's preference, there exists an optimal deadline to maximize the utility, which is defined as the linear combination of the cost and the delay. We also provide a method to select the optimal deadline. Our simulation demonstrates that this strategy with the optimal deadline can achieve a good performance.

Citation: Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1665-1688. doi: 10.3934/jimo.2021038
References:
[1]

Cisco, VNI Mobile Forecast Highlights Tool, 2020. Available from: https://www.cisco.com/c/m/en_us/solutions/service-provider/forecast-highlights-mobile.html.

[2]

Proxim Wireless Corporation, White Paper-Mobile Data Offloading Through Wi-Fi, 2010. Available from: https://www.sourcesecurity.com/docs/moredocs/proximmicrosite/Mobile-Data-Offloading-Through-WiFi-V1.2.pdf.

[3]

Samsung, Samsung Galaxy S10e/S10/S10+ User Manual, 2020. Available from: http://downloadcenter.samsung.com/content/UM/201903/20190305061207197/TMO_SM-G970U_SM-G973U_SM-G975U_EN_UM_P_9.0_022219_FINAL.pdf.

[4]

Umass Trace Repository, Wifi Availability Trace, 2020. Available from: http://traces.cs.umass.edu/index.php/Network/Networkl.

[5]

A. Ajith and T. G. Venkatesh, QoEenhanced mobile data offloading with balking, IEEE Commun. Lett., 21 (2017), 1143-1146. 

[6]

J. G. Andrews, Seven ways that HetNets are a cellular paradigm shift, IEEE Commun. Mag., 51 (2013), 136-144. 

[7]

A. Balasubramanian, R. Mahajan and A. Venkataramani, Augmenting mobile 3G using WiFi, in Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, (2010), 209-222. doi: 10.1145/1814433.1814456.

[8]

D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice-Hall, Inc., USA, 1992.

[9]

V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan and S. Madden, A measurement study of vehicular internet access using in situ Wi-Fi networks, in Proceedings of MobiCom, (2006), 50-61. doi: 10.1145/1161089.1161097.

[10]

N. Cheng, N. Lu, N. Zhang, X. S. Shen and J. W. Mark, Opportunistic WiFi offloading in vehicular environment: A queueing analysis, in Proceedings of GLOBECOM, (2014), 211-216.

[11]

C. H. FohM. Zukerman and J. W. Tantra, A markovian framework for performance evaluation of ieee 802.11, IEEE Trans. Wireless Commun., 6 (2007), 1276-1265. 

[12]

C. HuaH. YuR. ZhengJ. Li and R. Ni, Online packet dispatching for delay optimal concurrent transmissions in heterogeneous multi-RAT networks, IEEE Trans. Wirel. Commun., 15 (2016), 5076-5086. 

[13]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Trans. Commun., 61 (2013), 3530-3540. 

[14]

L. Huang and T. T. Lee, Queueing behavior of hybrid ARQ wireless system with finite buffer capacity, in Proceedings of the 21th Annual Wireless and Optical Communications Conference, (2012), 32-36. doi: 10.1109/WOCC.2012.6198142.

[15]

C. -D. Iskander and P. Takis Mathiopoulos, Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels, IEEE Trans. Commun., 50 (2002), 1301-1309. 

[16]

K. Kawanishi and T. Takine, The M/PH/1+D queue with Markov-renewal service interruptions and its application to delayed mobile data offloading, Perform. Eval., 134 (2019), 102002. doi: 10.1016/j.peva.2019.102002.

[17]

K. LeeJ. LeeY. YiI. Rhee and S. Chong, Mobile data offloading: How much can WiFi deliver?, IEEE/ACM Trans. Netw., 21 (2013), 536-550. 

[18]

J. LingS. KanugoviS. Vasudevan and A. K. Pramod, Enhanced capacity and coverage by Wi-Fi LTE integration, IEEE Commun. Mag., 53 (2015), 165-171. 

[19]

S. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89-113.  doi: 10.1007/s11134-005-2158-x.

[20]

F. Mehmeti and T. Spyropoulos, Performance analysis of "on-the-spot" mobile data offloading, in Proceedings of GLOBECOM, (2013), 1577-1583.

[21]

F. Mehmeti and T. Spyropoulos, Performance analysis of mobile data offloading in heterogeneous networks, IEEE Trans. Mob. Comput., 16 (2017), 482-497. 

[22]

F. Mehmeti and T. Spyropoulos, Performance modeling, analysis, and optimization of delayed mobile data offloading for mobile users, IEEE/ACM Trans. Netw., 25 (2017), 550-564. 

[23]

J. F. Shoch and J. A. Hupp, Measured performance of an ethernet local network, ACM Commun., 23 (1980), 711-721.  doi: 10.1145/359038.359044.

[24]

N. Wang and J. Wu, Opportunistic WiFi offloading in a vehicular environment: Waiting or downloading now?, in Proceedings of INFOCOM, (2016), 1-9.

[25]

R. W. Wolff, Poisson arrivals see time averages, Oper. Res., 30 (1982), 223-231.  doi: 10.1287/opre.30.2.223.

[26]

C. Zhang, B. Gu, Z. Liu, K. Yamori and Y. Tanaka, A reinforcement learning approach for cost- and energy-aware mobile data offloading, in Proceedings of the 18th Asia-Pacific Network Operations and Management Symposium, (2016), 1-6.

[27]

C. ZhangB. GuZ. LiuK. Yamori and Y. Tanaka, Cost- and energy-aware multi-flow mobile data offloading using Markov decision process, IEICE Trans. Commun., E101.B (2017), 657-666.  doi: 10.1587/transcom.2017NRP0014.

[28]

D. Zhang and C. K. Yeo, Optimal handing-back point in mobile data offloading, in Proceedings of VNC, (2012), 219-225.

[29]

J. Zhang, Z. Zhou, T. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Proceedings of 12th International Conference on Queueing Theory and Network Applications, (2017), 101-117. doi: 10.1007/978-3-319-68520-5_7.

[30]

H. ZhuM. LiL. FuG. XueY. Zhu and L. M. Ni, Impact of traffic influxes: Revealing exponential intercontact time in urban VANETs, IEEE Trans. Parallel Distrib. Syst., 22 (2011), 1258-1266. 

show all references

References:
[1]

Cisco, VNI Mobile Forecast Highlights Tool, 2020. Available from: https://www.cisco.com/c/m/en_us/solutions/service-provider/forecast-highlights-mobile.html.

[2]

Proxim Wireless Corporation, White Paper-Mobile Data Offloading Through Wi-Fi, 2010. Available from: https://www.sourcesecurity.com/docs/moredocs/proximmicrosite/Mobile-Data-Offloading-Through-WiFi-V1.2.pdf.

[3]

Samsung, Samsung Galaxy S10e/S10/S10+ User Manual, 2020. Available from: http://downloadcenter.samsung.com/content/UM/201903/20190305061207197/TMO_SM-G970U_SM-G973U_SM-G975U_EN_UM_P_9.0_022219_FINAL.pdf.

[4]

Umass Trace Repository, Wifi Availability Trace, 2020. Available from: http://traces.cs.umass.edu/index.php/Network/Networkl.

[5]

A. Ajith and T. G. Venkatesh, QoEenhanced mobile data offloading with balking, IEEE Commun. Lett., 21 (2017), 1143-1146. 

[6]

J. G. Andrews, Seven ways that HetNets are a cellular paradigm shift, IEEE Commun. Mag., 51 (2013), 136-144. 

[7]

A. Balasubramanian, R. Mahajan and A. Venkataramani, Augmenting mobile 3G using WiFi, in Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, (2010), 209-222. doi: 10.1145/1814433.1814456.

[8]

D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice-Hall, Inc., USA, 1992.

[9]

V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan and S. Madden, A measurement study of vehicular internet access using in situ Wi-Fi networks, in Proceedings of MobiCom, (2006), 50-61. doi: 10.1145/1161089.1161097.

[10]

N. Cheng, N. Lu, N. Zhang, X. S. Shen and J. W. Mark, Opportunistic WiFi offloading in vehicular environment: A queueing analysis, in Proceedings of GLOBECOM, (2014), 211-216.

[11]

C. H. FohM. Zukerman and J. W. Tantra, A markovian framework for performance evaluation of ieee 802.11, IEEE Trans. Wireless Commun., 6 (2007), 1276-1265. 

[12]

C. HuaH. YuR. ZhengJ. Li and R. Ni, Online packet dispatching for delay optimal concurrent transmissions in heterogeneous multi-RAT networks, IEEE Trans. Wirel. Commun., 15 (2016), 5076-5086. 

[13]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Trans. Commun., 61 (2013), 3530-3540. 

[14]

L. Huang and T. T. Lee, Queueing behavior of hybrid ARQ wireless system with finite buffer capacity, in Proceedings of the 21th Annual Wireless and Optical Communications Conference, (2012), 32-36. doi: 10.1109/WOCC.2012.6198142.

[15]

C. -D. Iskander and P. Takis Mathiopoulos, Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels, IEEE Trans. Commun., 50 (2002), 1301-1309. 

[16]

K. Kawanishi and T. Takine, The M/PH/1+D queue with Markov-renewal service interruptions and its application to delayed mobile data offloading, Perform. Eval., 134 (2019), 102002. doi: 10.1016/j.peva.2019.102002.

[17]

K. LeeJ. LeeY. YiI. Rhee and S. Chong, Mobile data offloading: How much can WiFi deliver?, IEEE/ACM Trans. Netw., 21 (2013), 536-550. 

[18]

J. LingS. KanugoviS. Vasudevan and A. K. Pramod, Enhanced capacity and coverage by Wi-Fi LTE integration, IEEE Commun. Mag., 53 (2015), 165-171. 

[19]

S. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89-113.  doi: 10.1007/s11134-005-2158-x.

[20]

F. Mehmeti and T. Spyropoulos, Performance analysis of "on-the-spot" mobile data offloading, in Proceedings of GLOBECOM, (2013), 1577-1583.

[21]

F. Mehmeti and T. Spyropoulos, Performance analysis of mobile data offloading in heterogeneous networks, IEEE Trans. Mob. Comput., 16 (2017), 482-497. 

[22]

F. Mehmeti and T. Spyropoulos, Performance modeling, analysis, and optimization of delayed mobile data offloading for mobile users, IEEE/ACM Trans. Netw., 25 (2017), 550-564. 

[23]

J. F. Shoch and J. A. Hupp, Measured performance of an ethernet local network, ACM Commun., 23 (1980), 711-721.  doi: 10.1145/359038.359044.

[24]

N. Wang and J. Wu, Opportunistic WiFi offloading in a vehicular environment: Waiting or downloading now?, in Proceedings of INFOCOM, (2016), 1-9.

[25]

R. W. Wolff, Poisson arrivals see time averages, Oper. Res., 30 (1982), 223-231.  doi: 10.1287/opre.30.2.223.

[26]

C. Zhang, B. Gu, Z. Liu, K. Yamori and Y. Tanaka, A reinforcement learning approach for cost- and energy-aware mobile data offloading, in Proceedings of the 18th Asia-Pacific Network Operations and Management Symposium, (2016), 1-6.

[27]

C. ZhangB. GuZ. LiuK. Yamori and Y. Tanaka, Cost- and energy-aware multi-flow mobile data offloading using Markov decision process, IEICE Trans. Commun., E101.B (2017), 657-666.  doi: 10.1587/transcom.2017NRP0014.

[28]

D. Zhang and C. K. Yeo, Optimal handing-back point in mobile data offloading, in Proceedings of VNC, (2012), 219-225.

[29]

J. Zhang, Z. Zhou, T. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Proceedings of 12th International Conference on Queueing Theory and Network Applications, (2017), 101-117. doi: 10.1007/978-3-319-68520-5_7.

[30]

H. ZhuM. LiL. FuG. XueY. Zhu and L. M. Ni, Impact of traffic influxes: Revealing exponential intercontact time in urban VANETs, IEEE Trans. Parallel Distrib. Syst., 22 (2011), 1258-1266. 

Figure 1.  Transition of wireless channel states in urban areas
Figure 2.  Process of the proposed Wi-Fi offloading strategy
Figure 3.  State transition of the data transmission
Figure 4.  Relationship between two kinds of embedded points
Figure 5.  The $ m $th frame starts service in the cellular state, while the last event is (a) the $ (m-1) $th frame starts its service in the cellular state, or (b) the service state transits to cellular state when the $ (m-1) $th frame is in service
Figure 6.  The service time when a frame starts its service in the deferred state
Figure 7.  Waiting time of the newly-arrived frame
Figure 8.  Delay and efficiency performance in the M/MMSP/1 queueing system
Figure 9.  Utility vs. deadline in the M/MMSP/1 queueing system
Figure 10.  Utility $ U $ vs. preference weight $ a $ in the M/MMSP/1 queueing system
Figure 11.  Utility $ U $ vs. preference weight $ a $ when the duration of channel states $ C $ and $ F $ follow the truncated Pareto distribution
Figure 12.  Utility $ U $ vs. preference weight $ a $ when the data frame size is dual-fixed
Figure 13.  Utility $ U $ vs. preference weight $ a $ when the data rate of each Wi-Fi hotspot is different
Figure 14.  State transition diagram of the two-dimensional Markov chain
Table 1.  Parameters employed in the performance study
Parameter Value
Mean duration of channel state $ C $ 28.42s
Mean duration of channel state $ F $ 12.57s
Data rate of cellular network 8.7Mbps
Data rate of Wi-Fi hotspots 24.4Mbps
Mean frame size 8.184Kb
Arrival rate of data frames 800 frames/s
Parameter Value
Mean duration of channel state $ C $ 28.42s
Mean duration of channel state $ F $ 12.57s
Data rate of cellular network 8.7Mbps
Data rate of Wi-Fi hotspots 24.4Mbps
Mean frame size 8.184Kb
Arrival rate of data frames 800 frames/s
[1]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[2]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[3]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[4]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[5]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[6]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[7]

Xiaoxi Zhu, Kai Liu, Miaomiao Wang, Rui Zhang, Minglun Ren. Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022021

[8]

Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2749-2782. doi: 10.3934/jimo.2021090

[9]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[10]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial and Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[11]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[12]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control and Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[13]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[14]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[15]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial and Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[16]

Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006

[17]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[18]

Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419

[19]

Ramesh Devarapalli, Biplab Bhattacharyya. A novel hybrid AGWO-PSO algorithm in mitigation of power network oscillations with STATCOM. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 579-611. doi: 10.3934/naco.2020057

[20]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (664)
  • HTML views (478)
  • Cited by (0)

Other articles
by authors

[Back to Top]