• Previous Article
    Collaborative mission optimization for ship rapid search by multiple heterogeneous remote sensing satellites
  • JIMO Home
  • This Issue
  • Next Article
    Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment
doi: 10.3934/jimo.2021038
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users

1. 

Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China

2. 

The Chinese University of Hong Kong(Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen, China

* Corresponding author: Xiaoyi Zhou

Received  July 2020 Revised  December 2020 Early access March 2021

In recent years, offloading mobile traffic through Wi-Fi has emerged as a potential solution to lower down the communication cost for mobile users. Users hope to reduce the cost while keeping the delay in an acceptable range through Wi-Fi offloading. Also, different users have different sensitivities to the cost and the delay performance. How to make a proper cost-delay tradeoff according to the user's preference is the key issue in the design of the offloading strategy. To address this issue, we propose a preference-oriented offloading strategy for current commercial terminals, which transmit traffic only via one channel simultaneously. We model the strategy as a three-state M/MMSP/1 queueing system, of which the service process is a Markov modulated service process (MMSP), and obtain the structured solutions by establishing a hybrid embedded Markov chain. Our analysis shows that, given the user's preference, there exists an optimal deadline to maximize the utility, which is defined as the linear combination of the cost and the delay. We also provide a method to select the optimal deadline. Our simulation demonstrates that this strategy with the optimal deadline can achieve a good performance.

Citation: Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021038
References:
[1]

Cisco, VNI Mobile Forecast Highlights Tool, 2020. Available from: https://www.cisco.com/c/m/en_us/solutions/service-provider/forecast-highlights-mobile.html. Google Scholar

[2]

Proxim Wireless Corporation, White Paper-Mobile Data Offloading Through Wi-Fi, 2010. Available from: https://www.sourcesecurity.com/docs/moredocs/proximmicrosite/Mobile-Data-Offloading-Through-WiFi-V1.2.pdf. Google Scholar

[3]

Samsung, Samsung Galaxy S10e/S10/S10+ User Manual, 2020. Available from: http://downloadcenter.samsung.com/content/UM/201903/20190305061207197/TMO_SM-G970U_SM-G973U_SM-G975U_EN_UM_P_9.0_022219_FINAL.pdf. Google Scholar

[4]

Umass Trace Repository, Wifi Availability Trace, 2020. Available from: http://traces.cs.umass.edu/index.php/Network/Networkl. Google Scholar

[5]

A. Ajith and T. G. Venkatesh, QoEenhanced mobile data offloading with balking, IEEE Commun. Lett., 21 (2017), 1143-1146.   Google Scholar

[6]

J. G. Andrews, Seven ways that HetNets are a cellular paradigm shift, IEEE Commun. Mag., 51 (2013), 136-144.   Google Scholar

[7]

A. Balasubramanian, R. Mahajan and A. Venkataramani, Augmenting mobile 3G using WiFi, in Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, (2010), 209-222. doi: 10.1145/1814433.1814456.  Google Scholar

[8]

D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice-Hall, Inc., USA, 1992. Google Scholar

[9]

V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan and S. Madden, A measurement study of vehicular internet access using in situ Wi-Fi networks, in Proceedings of MobiCom, (2006), 50-61. doi: 10.1145/1161089.1161097.  Google Scholar

[10]

N. Cheng, N. Lu, N. Zhang, X. S. Shen and J. W. Mark, Opportunistic WiFi offloading in vehicular environment: A queueing analysis, in Proceedings of GLOBECOM, (2014), 211-216. Google Scholar

[11]

C. H. FohM. Zukerman and J. W. Tantra, A markovian framework for performance evaluation of ieee 802.11, IEEE Trans. Wireless Commun., 6 (2007), 1276-1265.   Google Scholar

[12]

C. HuaH. YuR. ZhengJ. Li and R. Ni, Online packet dispatching for delay optimal concurrent transmissions in heterogeneous multi-RAT networks, IEEE Trans. Wirel. Commun., 15 (2016), 5076-5086.   Google Scholar

[13]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Trans. Commun., 61 (2013), 3530-3540.   Google Scholar

[14]

L. Huang and T. T. Lee, Queueing behavior of hybrid ARQ wireless system with finite buffer capacity, in Proceedings of the 21th Annual Wireless and Optical Communications Conference, (2012), 32-36. doi: 10.1109/WOCC.2012.6198142.  Google Scholar

[15]

C. -D. Iskander and P. Takis Mathiopoulos, Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels, IEEE Trans. Commun., 50 (2002), 1301-1309.   Google Scholar

[16]

K. Kawanishi and T. Takine, The M/PH/1+D queue with Markov-renewal service interruptions and its application to delayed mobile data offloading, Perform. Eval., 134 (2019), 102002. doi: 10.1016/j.peva.2019.102002.  Google Scholar

[17]

K. LeeJ. LeeY. YiI. Rhee and S. Chong, Mobile data offloading: How much can WiFi deliver?, IEEE/ACM Trans. Netw., 21 (2013), 536-550.   Google Scholar

[18]

J. LingS. KanugoviS. Vasudevan and A. K. Pramod, Enhanced capacity and coverage by Wi-Fi LTE integration, IEEE Commun. Mag., 53 (2015), 165-171.   Google Scholar

[19]

S. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89-113.  doi: 10.1007/s11134-005-2158-x.  Google Scholar

[20]

F. Mehmeti and T. Spyropoulos, Performance analysis of "on-the-spot" mobile data offloading, in Proceedings of GLOBECOM, (2013), 1577-1583. Google Scholar

[21]

F. Mehmeti and T. Spyropoulos, Performance analysis of mobile data offloading in heterogeneous networks, IEEE Trans. Mob. Comput., 16 (2017), 482-497.   Google Scholar

[22]

F. Mehmeti and T. Spyropoulos, Performance modeling, analysis, and optimization of delayed mobile data offloading for mobile users, IEEE/ACM Trans. Netw., 25 (2017), 550-564.   Google Scholar

[23]

J. F. Shoch and J. A. Hupp, Measured performance of an ethernet local network, ACM Commun., 23 (1980), 711-721.  doi: 10.1145/359038.359044.  Google Scholar

[24]

N. Wang and J. Wu, Opportunistic WiFi offloading in a vehicular environment: Waiting or downloading now?, in Proceedings of INFOCOM, (2016), 1-9. Google Scholar

[25]

R. W. Wolff, Poisson arrivals see time averages, Oper. Res., 30 (1982), 223-231.  doi: 10.1287/opre.30.2.223.  Google Scholar

[26]

C. Zhang, B. Gu, Z. Liu, K. Yamori and Y. Tanaka, A reinforcement learning approach for cost- and energy-aware mobile data offloading, in Proceedings of the 18th Asia-Pacific Network Operations and Management Symposium, (2016), 1-6. Google Scholar

[27]

C. ZhangB. GuZ. LiuK. Yamori and Y. Tanaka, Cost- and energy-aware multi-flow mobile data offloading using Markov decision process, IEICE Trans. Commun., E101.B (2017), 657-666.  doi: 10.1587/transcom.2017NRP0014.  Google Scholar

[28]

D. Zhang and C. K. Yeo, Optimal handing-back point in mobile data offloading, in Proceedings of VNC, (2012), 219-225. Google Scholar

[29]

J. Zhang, Z. Zhou, T. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Proceedings of 12th International Conference on Queueing Theory and Network Applications, (2017), 101-117. doi: 10.1007/978-3-319-68520-5_7.  Google Scholar

[30]

H. ZhuM. LiL. FuG. XueY. Zhu and L. M. Ni, Impact of traffic influxes: Revealing exponential intercontact time in urban VANETs, IEEE Trans. Parallel Distrib. Syst., 22 (2011), 1258-1266.   Google Scholar

show all references

References:
[1]

Cisco, VNI Mobile Forecast Highlights Tool, 2020. Available from: https://www.cisco.com/c/m/en_us/solutions/service-provider/forecast-highlights-mobile.html. Google Scholar

[2]

Proxim Wireless Corporation, White Paper-Mobile Data Offloading Through Wi-Fi, 2010. Available from: https://www.sourcesecurity.com/docs/moredocs/proximmicrosite/Mobile-Data-Offloading-Through-WiFi-V1.2.pdf. Google Scholar

[3]

Samsung, Samsung Galaxy S10e/S10/S10+ User Manual, 2020. Available from: http://downloadcenter.samsung.com/content/UM/201903/20190305061207197/TMO_SM-G970U_SM-G973U_SM-G975U_EN_UM_P_9.0_022219_FINAL.pdf. Google Scholar

[4]

Umass Trace Repository, Wifi Availability Trace, 2020. Available from: http://traces.cs.umass.edu/index.php/Network/Networkl. Google Scholar

[5]

A. Ajith and T. G. Venkatesh, QoEenhanced mobile data offloading with balking, IEEE Commun. Lett., 21 (2017), 1143-1146.   Google Scholar

[6]

J. G. Andrews, Seven ways that HetNets are a cellular paradigm shift, IEEE Commun. Mag., 51 (2013), 136-144.   Google Scholar

[7]

A. Balasubramanian, R. Mahajan and A. Venkataramani, Augmenting mobile 3G using WiFi, in Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, (2010), 209-222. doi: 10.1145/1814433.1814456.  Google Scholar

[8]

D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice-Hall, Inc., USA, 1992. Google Scholar

[9]

V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan and S. Madden, A measurement study of vehicular internet access using in situ Wi-Fi networks, in Proceedings of MobiCom, (2006), 50-61. doi: 10.1145/1161089.1161097.  Google Scholar

[10]

N. Cheng, N. Lu, N. Zhang, X. S. Shen and J. W. Mark, Opportunistic WiFi offloading in vehicular environment: A queueing analysis, in Proceedings of GLOBECOM, (2014), 211-216. Google Scholar

[11]

C. H. FohM. Zukerman and J. W. Tantra, A markovian framework for performance evaluation of ieee 802.11, IEEE Trans. Wireless Commun., 6 (2007), 1276-1265.   Google Scholar

[12]

C. HuaH. YuR. ZhengJ. Li and R. Ni, Online packet dispatching for delay optimal concurrent transmissions in heterogeneous multi-RAT networks, IEEE Trans. Wirel. Commun., 15 (2016), 5076-5086.   Google Scholar

[13]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Trans. Commun., 61 (2013), 3530-3540.   Google Scholar

[14]

L. Huang and T. T. Lee, Queueing behavior of hybrid ARQ wireless system with finite buffer capacity, in Proceedings of the 21th Annual Wireless and Optical Communications Conference, (2012), 32-36. doi: 10.1109/WOCC.2012.6198142.  Google Scholar

[15]

C. -D. Iskander and P. Takis Mathiopoulos, Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels, IEEE Trans. Commun., 50 (2002), 1301-1309.   Google Scholar

[16]

K. Kawanishi and T. Takine, The M/PH/1+D queue with Markov-renewal service interruptions and its application to delayed mobile data offloading, Perform. Eval., 134 (2019), 102002. doi: 10.1016/j.peva.2019.102002.  Google Scholar

[17]

K. LeeJ. LeeY. YiI. Rhee and S. Chong, Mobile data offloading: How much can WiFi deliver?, IEEE/ACM Trans. Netw., 21 (2013), 536-550.   Google Scholar

[18]

J. LingS. KanugoviS. Vasudevan and A. K. Pramod, Enhanced capacity and coverage by Wi-Fi LTE integration, IEEE Commun. Mag., 53 (2015), 165-171.   Google Scholar

[19]

S. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89-113.  doi: 10.1007/s11134-005-2158-x.  Google Scholar

[20]

F. Mehmeti and T. Spyropoulos, Performance analysis of "on-the-spot" mobile data offloading, in Proceedings of GLOBECOM, (2013), 1577-1583. Google Scholar

[21]

F. Mehmeti and T. Spyropoulos, Performance analysis of mobile data offloading in heterogeneous networks, IEEE Trans. Mob. Comput., 16 (2017), 482-497.   Google Scholar

[22]

F. Mehmeti and T. Spyropoulos, Performance modeling, analysis, and optimization of delayed mobile data offloading for mobile users, IEEE/ACM Trans. Netw., 25 (2017), 550-564.   Google Scholar

[23]

J. F. Shoch and J. A. Hupp, Measured performance of an ethernet local network, ACM Commun., 23 (1980), 711-721.  doi: 10.1145/359038.359044.  Google Scholar

[24]

N. Wang and J. Wu, Opportunistic WiFi offloading in a vehicular environment: Waiting or downloading now?, in Proceedings of INFOCOM, (2016), 1-9. Google Scholar

[25]

R. W. Wolff, Poisson arrivals see time averages, Oper. Res., 30 (1982), 223-231.  doi: 10.1287/opre.30.2.223.  Google Scholar

[26]

C. Zhang, B. Gu, Z. Liu, K. Yamori and Y. Tanaka, A reinforcement learning approach for cost- and energy-aware mobile data offloading, in Proceedings of the 18th Asia-Pacific Network Operations and Management Symposium, (2016), 1-6. Google Scholar

[27]

C. ZhangB. GuZ. LiuK. Yamori and Y. Tanaka, Cost- and energy-aware multi-flow mobile data offloading using Markov decision process, IEICE Trans. Commun., E101.B (2017), 657-666.  doi: 10.1587/transcom.2017NRP0014.  Google Scholar

[28]

D. Zhang and C. K. Yeo, Optimal handing-back point in mobile data offloading, in Proceedings of VNC, (2012), 219-225. Google Scholar

[29]

J. Zhang, Z. Zhou, T. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Proceedings of 12th International Conference on Queueing Theory and Network Applications, (2017), 101-117. doi: 10.1007/978-3-319-68520-5_7.  Google Scholar

[30]

H. ZhuM. LiL. FuG. XueY. Zhu and L. M. Ni, Impact of traffic influxes: Revealing exponential intercontact time in urban VANETs, IEEE Trans. Parallel Distrib. Syst., 22 (2011), 1258-1266.   Google Scholar

Figure 1.  Transition of wireless channel states in urban areas
Figure 2.  Process of the proposed Wi-Fi offloading strategy
Figure 3.  State transition of the data transmission
Figure 4.  Relationship between two kinds of embedded points
Figure 5.  The $ m $th frame starts service in the cellular state, while the last event is (a) the $ (m-1) $th frame starts its service in the cellular state, or (b) the service state transits to cellular state when the $ (m-1) $th frame is in service
Figure 6.  The service time when a frame starts its service in the deferred state
Figure 7.  Waiting time of the newly-arrived frame
Figure 8.  Delay and efficiency performance in the M/MMSP/1 queueing system
Figure 9.  Utility vs. deadline in the M/MMSP/1 queueing system
Figure 10.  Utility $ U $ vs. preference weight $ a $ in the M/MMSP/1 queueing system
Figure 11.  Utility $ U $ vs. preference weight $ a $ when the duration of channel states $ C $ and $ F $ follow the truncated Pareto distribution
Figure 12.  Utility $ U $ vs. preference weight $ a $ when the data frame size is dual-fixed
Figure 13.  Utility $ U $ vs. preference weight $ a $ when the data rate of each Wi-Fi hotspot is different
Figure 14.  State transition diagram of the two-dimensional Markov chain
Table 1.  Parameters employed in the performance study
Parameter Value
Mean duration of channel state $ C $ 28.42s
Mean duration of channel state $ F $ 12.57s
Data rate of cellular network 8.7Mbps
Data rate of Wi-Fi hotspots 24.4Mbps
Mean frame size 8.184Kb
Arrival rate of data frames 800 frames/s
Parameter Value
Mean duration of channel state $ C $ 28.42s
Mean duration of channel state $ F $ 12.57s
Data rate of cellular network 8.7Mbps
Data rate of Wi-Fi hotspots 24.4Mbps
Mean frame size 8.184Kb
Arrival rate of data frames 800 frames/s
[1]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[2]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[3]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[4]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[5]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[6]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[7]

Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021090

[8]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[9]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[10]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[11]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[12]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[13]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[14]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[15]

Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006

[16]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[17]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[18]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[19]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[20]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]