• Previous Article
    Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs
  • JIMO Home
  • This Issue
  • Next Article
    Research on the parallel–batch scheduling with linearly lookahead model
doi: 10.3934/jimo.2021041

Solutions and characterizations under multicriteria management systems

Department of Applied Mathematics, National Pingtung University, 900 Pingtung, Taiwan

* Corresponding author: Yu-Hsien Liao

Received  January 2020 Revised  October 2020 Published  March 2021

In real situations, agents might take different activity levels to participate; agents might represent administrative areas of different scales. On the other hand, agents always face an increasing need to focus on multiple aims efficiently in their operational processes. Thus, we introduce two solutions to investigate distribution mechanism by applying the maximal level-marginal contributions among activity level (decision) vectors under multicriteria management systems. Based on a specific reduced game and some reasonable properties, we offer some characterizations to analyze the rationality for these two solutions. In order to desire that any utility could be distributed among the players and their activity levels in proportion to related differences, two weighted extensions are also proposed by means of different weight functions.

Citation: Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021041
References:
[1]

E. M. BednarczukJ. Miroforidis and P. Pyzel, A multi-criteria approach to approximate solution of multiple-choice knapsack problem, Computational Optimization and Applications, 70 (2018), 889-910.  doi: 10.1007/s10589-018-9988-z.  Google Scholar

[2]

R. Branzei, On solution concepts for multi-choice cooperative games, SEIO Bulletin, 24 (2008), 13-19.   Google Scholar

[3]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, Multi-choice clan games and their core, TOP, 17 (2009), 123-138.  doi: 10.1007/s11750-009-0081-8.  Google Scholar

[4]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, A constrained egalitarian solution for convex multi-choice games, TOP, 22 (2014), 860-874.  doi: 10.1007/s11750-013-0302-z.  Google Scholar

[5]

R. BranzeiS. Tijs and J. M. Zarzuelo, Convex multi-choice cooperative games: Characterizations and monotonic allocation schemes, European J. Oper. Res., 198 (2009), 571-575.  doi: 10.1016/j.ejor.2008.09.024.  Google Scholar

[6]

S. M. R. Davoodi and A. Goli, An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context, Computers and Industrial Engineering, 130 (2019), 370-380.  doi: 10.1016/j.cie.2019.02.040.  Google Scholar

[7]

A. Goli, H. K. Zare, R. Tavakkoli–Moghaddam and A. Sadegheih, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry, Computers and Industrial Engineering, 137 (2019), 106090. doi: 10.1016/j. cie. 2019.106090.  Google Scholar

[8]

A. GoliH. K. ZareR. Tavakkoli–Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed–loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.  doi: 10.1111/coin.12228.  Google Scholar

[9]

M. R. GuariniF. Battisti and A. Chiovitti, A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes, Sustainability, 10 (2018), 507-534.  doi: 10.3390/su10020507.  Google Scholar

[10]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614.  doi: 10.2307/1911054.  Google Scholar

[11]

Y. A. Hwang and Y. H. Liao, The unit-level-core for multi-choice games: The replicated core for TU games, Journal of Global Optimization, 47 (2010), 161-171.  doi: 10.1007/s10898-009-9463-6.  Google Scholar

[12]

Y. A. Hwang and Y. H. Liao, Reduction and dynamic approach for the multi-choice Shapley value, Journal of Industrial and Management Optimization, 9 (2013), 885-892.  doi: 10.3934/jimo.2013.9.885.  Google Scholar

[13]

Y. H. Liao, The maximal equal allocation of nonseparable costs on multi-choice games, Economics Bulletin, 3 (2008), 1-8.   Google Scholar

[14]

Y. H. Liao, The duplicate extension for the equal allocation of nonseparable costs, Operational Research: An International Journal, 13 (2012), 385-397.   Google Scholar

[15]

Y. H. Liao, The precore: Converse consistent enlargements and alternative axiomatic results, TOP, 26 (2018), 146-163.  doi: 10.1007/s11750-017-0463-2.  Google Scholar

[16]

Y. H. LiaoP. T. Liu and L. Y. Chung, The normalizations and related dynamic processes for two power indexes, Journal of Control and Decision, 4 (2017), 179-194.  doi: 10.1080/23307706.2017.1319303.  Google Scholar

[17]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407.  doi: 10.1007/BF01358800.  Google Scholar

[18]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1985), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[19]

I. MustakerovD. Borissova and E. Bantutov, Multiple-choice decision making by multicriteria combinatorial optimization, Advanced Modeling and Optimization, 14 (2012), 729-737.   Google Scholar

[20]

A. van den NouwelandJ. PottersS. Tijs and J. M. Zarzuelo, Cores and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311.  doi: 10.1007/BF01432361.  Google Scholar

[21] J. S. Ransmeier, The Tennessee Valley Authority, Vanderbilt University Press, Nashville, TN, 1942.   Google Scholar
[22]

A. K. SangaiahE. B. TirkolaeeA. Goli and S. Dehnavi–Arani, Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, 24 (2020), 7885-7905.  doi: 10.1007/s00500-019-04010-6.  Google Scholar

[23] L. S. Shapley, Discussant's Comment, Joint Cost Allocation, University of Oklahoma Press, Tulsa, 1982.   Google Scholar
[24]

E. B. TirkolaeeA. GoliM. HematianA. K. Sangaiah and T. Han, Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms, Computing, 101 (2019), 547-570.  doi: 10.1007/s00607-018-00693-1.  Google Scholar

show all references

References:
[1]

E. M. BednarczukJ. Miroforidis and P. Pyzel, A multi-criteria approach to approximate solution of multiple-choice knapsack problem, Computational Optimization and Applications, 70 (2018), 889-910.  doi: 10.1007/s10589-018-9988-z.  Google Scholar

[2]

R. Branzei, On solution concepts for multi-choice cooperative games, SEIO Bulletin, 24 (2008), 13-19.   Google Scholar

[3]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, Multi-choice clan games and their core, TOP, 17 (2009), 123-138.  doi: 10.1007/s11750-009-0081-8.  Google Scholar

[4]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, A constrained egalitarian solution for convex multi-choice games, TOP, 22 (2014), 860-874.  doi: 10.1007/s11750-013-0302-z.  Google Scholar

[5]

R. BranzeiS. Tijs and J. M. Zarzuelo, Convex multi-choice cooperative games: Characterizations and monotonic allocation schemes, European J. Oper. Res., 198 (2009), 571-575.  doi: 10.1016/j.ejor.2008.09.024.  Google Scholar

[6]

S. M. R. Davoodi and A. Goli, An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context, Computers and Industrial Engineering, 130 (2019), 370-380.  doi: 10.1016/j.cie.2019.02.040.  Google Scholar

[7]

A. Goli, H. K. Zare, R. Tavakkoli–Moghaddam and A. Sadegheih, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry, Computers and Industrial Engineering, 137 (2019), 106090. doi: 10.1016/j. cie. 2019.106090.  Google Scholar

[8]

A. GoliH. K. ZareR. Tavakkoli–Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed–loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.  doi: 10.1111/coin.12228.  Google Scholar

[9]

M. R. GuariniF. Battisti and A. Chiovitti, A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes, Sustainability, 10 (2018), 507-534.  doi: 10.3390/su10020507.  Google Scholar

[10]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614.  doi: 10.2307/1911054.  Google Scholar

[11]

Y. A. Hwang and Y. H. Liao, The unit-level-core for multi-choice games: The replicated core for TU games, Journal of Global Optimization, 47 (2010), 161-171.  doi: 10.1007/s10898-009-9463-6.  Google Scholar

[12]

Y. A. Hwang and Y. H. Liao, Reduction and dynamic approach for the multi-choice Shapley value, Journal of Industrial and Management Optimization, 9 (2013), 885-892.  doi: 10.3934/jimo.2013.9.885.  Google Scholar

[13]

Y. H. Liao, The maximal equal allocation of nonseparable costs on multi-choice games, Economics Bulletin, 3 (2008), 1-8.   Google Scholar

[14]

Y. H. Liao, The duplicate extension for the equal allocation of nonseparable costs, Operational Research: An International Journal, 13 (2012), 385-397.   Google Scholar

[15]

Y. H. Liao, The precore: Converse consistent enlargements and alternative axiomatic results, TOP, 26 (2018), 146-163.  doi: 10.1007/s11750-017-0463-2.  Google Scholar

[16]

Y. H. LiaoP. T. Liu and L. Y. Chung, The normalizations and related dynamic processes for two power indexes, Journal of Control and Decision, 4 (2017), 179-194.  doi: 10.1080/23307706.2017.1319303.  Google Scholar

[17]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407.  doi: 10.1007/BF01358800.  Google Scholar

[18]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1985), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[19]

I. MustakerovD. Borissova and E. Bantutov, Multiple-choice decision making by multicriteria combinatorial optimization, Advanced Modeling and Optimization, 14 (2012), 729-737.   Google Scholar

[20]

A. van den NouwelandJ. PottersS. Tijs and J. M. Zarzuelo, Cores and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311.  doi: 10.1007/BF01432361.  Google Scholar

[21] J. S. Ransmeier, The Tennessee Valley Authority, Vanderbilt University Press, Nashville, TN, 1942.   Google Scholar
[22]

A. K. SangaiahE. B. TirkolaeeA. Goli and S. Dehnavi–Arani, Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, 24 (2020), 7885-7905.  doi: 10.1007/s00500-019-04010-6.  Google Scholar

[23] L. S. Shapley, Discussant's Comment, Joint Cost Allocation, University of Oklahoma Press, Tulsa, 1982.   Google Scholar
[24]

E. B. TirkolaeeA. GoliM. HematianA. K. Sangaiah and T. Han, Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms, Computing, 101 (2019), 547-570.  doi: 10.1007/s00607-018-00693-1.  Google Scholar

[1]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[2]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[3]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[4]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002

[5]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[7]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[8]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[11]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

[12]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[15]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[16]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[17]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[18]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[20]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (17)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]