[1]
|
M. A. Alhaj, D. Svetinovic and A. Diabat, A carbon-sensitive two-echelon-inventory supply chain model with stochastic demand, Resources Conservation & Recycling, 108 (2016), 82-87.
doi: 10.1016/j.resconrec.2015.11.011.
|
[2]
|
M. J. Amoshahy, M. Shamsi and M. H. Sedaaghi, A novel flexible inertia weight particle swarm optimization algorithm, PLoS One, 11 (2016), e0161558.
doi: 10.1371/journal.pone.0161558.
|
[3]
|
Z. N. Ansari and R. Kant, A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management, Journal of Cleaner Production, 142 (2017), 2524-2543.
doi: 10.1016/j.jclepro.2016.11.023.
|
[4]
|
V. Artale, C. L. Milazzo, C. Orlando and A. Ricciardello, Comparison of GA and PSO approaches for the direct and LQR tuning of a multirotor PD controller, Journal of Industrial & Management Optimization, 13 (2017), 2067-2091.
doi: 10.3934/jimo.2017032.
|
[5]
|
Q. Bai, J. Xu, F. Meng and N. Yu, Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning, Journal of Industrial & Management Optimization, 2020.
doi: 10.3934/jimo.2020126.
|
[6]
|
J. C. Bansal, P. Singh, M. Saraswat, A. Verma, S. S. Jadon and A. Abraham, Inertia weight strategies in particle swarm optimization, in Third World Congress on Nature and Biologically Inspired Computing, Salamanca, 2011,633-640.
doi: 10.1109/NaBIC.2011.6089659.
|
[7]
|
E. Bazan, M. Y. Jaber and S. Zanoni, Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms, International Journal of Production Economics, 183 (2017), 394-408.
doi: 10.1016/j.ijpe.2016.07.009.
|
[8]
|
S. Benjaafar, Y. Li and M. Daskin, Carbon footprint and the management of supply chains: Insights from simple models, IEEE Transactions on Automation Science and Engineering, 10 (2012), 99-116.
doi: 10.1109/TASE.2012.2203304.
|
[9]
|
J. Cong, T. Pang and H. Peng, Optimal strategies for capital constrained low-carbon supply chains under yield uncertainty, Journal of Cleaner Production, 256 (2020), 120339.
doi: 10.1016/j.jclepro.2020.120339.
|
[10]
|
Y. Daryanto, H. M. Wee and R. D. Astanti, Three-echelon supply chain model considering carbon emission and item deterioration, Transportation Research Part E: Logistics and Transportation Review, 122 (2019), 368-383.
doi: 10.1016/j.tre.2018.12.014.
|
[11]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[12]
|
M. Desrochers and G. Laporte, Improvements and extensions to the miller-tucker-zemlin subtour elimination constraints, Operations Research Letters, 10 (1991), 27-36.
doi: 10.1016/0167-6377(91)90083-2.
|
[13]
|
S. Du, J. Zhu, H. Jiao and W. Ye, Game-theoretical analysis for supply chain with consumer preference to low carbon, International Journal of Production Research, 53 (2015), 3753-3768.
doi: 10.1080/00207543.2014.988888.
|
[14]
|
R. M. Everson, J. E. Fieldsend and S. Singh, Full elite sets for multi-objective optimisation, in I. C. Parmee (ed.), Adaptive Computing in Design and Manufacture, Springer, 2002,343-354.
doi: 10.1007/978-0-85729-345-9_29.
|
[15]
|
R. Z. Farahani, H. Rashidi Bajgan, B. Fahimnia and M. Kaviani, Location-inventory problem in supply chains: A modelling review, International Journal of Production Research, 53 (2015), 3769-3788.
doi: 10.1080/00207543.2014.988889.
|
[16]
|
A. Ghorbani and M. R. A. Jokar, A hybrid imperialist competitive-simulated annealing algorithm for a multisource multi-product location-routing-inventory problem, Computers & Industrial Engineering, 101 (2016), 116-127.
doi: 10.1016/j.cie.2016.08.027.
|
[17]
|
K. Hoen, T. Tan, J. Fransoo and G. Van Houtum, Effect of carbon emission regulations on transport mode selection under stochastic demand, Flexible Services and Manufacturing Journal, 26 (2014), 170-195.
doi: 10.1007/s10696-012-9151-6.
|
[18]
|
Y.-S. Huang, C. C. Fang and Y. A. Lin, Inventory management in supply chains with consideration of logistics, green investment and different carbon emissions policies, Computers & Industrial Engineering, 139 (2020), 106207.
doi: 10.1016/j.cie.2019.106207.
|
[19]
|
M. Y. Jaber, C. H. Glock and A. M. El. Saadany, Supply chain coordination with emissions reduction incentives, International Journal of Production Research, 51 (2013), 69-82.
doi: 10.1080/00207543.2011.651656.
|
[20]
|
A. A. Javid and N. Azad, Incorporating location, routing and inventory decisions in supply chain network design, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 582-597.
|
[21]
|
S. F. Ji, R. J. Luo and X. S. Peng, A probability guided evolutionary algorithm for multi-objective green express cabinet assignment in urban last-mile logistics, International Journal of Production Research, 57 (2019), 3382-3404.
doi: 10.1080/00207543.2018.1533653.
|
[22]
|
J. Kennedy and R. Eberhart, Particle swarm optimization, in, IEEE International Conference on Neural Networks, Perth, Australia, 1995, 1942-1948.
doi: 10.1109/ICNN.1995.488968.
|
[23]
|
J. S. L. Lam and Y. Gu, A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements, International Journal of Production Economics, 171 (2016), 266-274.
doi: 10.1016/j.ijpe.2015.09.024.
|
[24]
|
H. F. Ling, X. Z. Zhou, X. L. Jiang and Y. H. Xiao, Improved constrained multi-objective particle swarm optimization algorithm, Journal of Computer Applications, 32 (2012), 1320-1324.
doi: 10.3724/SP.J.1087.2012.01320.
|
[25]
|
R. J. Luo, S. F. Ji and B. L. Zhu, A Pareto evolutionary algorithm based on incremental learning for a kind of multi-objective multidimensional knapsack problem, Computers & Industrial Engineering, 135 (2019), 537-559.
doi: 10.1016/j.cie.2019.06.027.
|
[26]
|
J. M. C. Martí, J. S. Tancrez and R. W. Seifert, Carbon footprint and responsiveness trade-offs in supply chain network design, International Journal of Production Economics, 166 (2015), 129-142.
|
[27]
|
H. Min, V. Jayaraman and R. Srivastava, Combined location-routing problems: A synthesis and future research directions, European Journal of Operational Research, 108 (1998), 1-15.
doi: 10.1016/S0377-2217(97)00172-0.
|
[28]
|
S. M. Mousavi, A. Bahreininejad, S. N. Musa and F. Yusof, A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network, Journal of Intelligent Manufacturing, 28 (2017), 191-206.
doi: 10.1007/s10845-014-0970-z.
|
[29]
|
M. Musavi and A. Bozorgi-Amiri, A multi-objective sustainable hub location-scheduling problem for perishable food supply chain, Computers & Industrial Engineering, 113 (2017), 766-778.
doi: 10.1016/j.cie.2017.07.039.
|
[30]
|
T. Paksoy, E. }Ozceylan and G. W. Weber, A multi objective model for optimization of a green supply chain network, AIP Conference Proceedings, 311 (2010), 1239.
doi: 10.1063/1.3459765.
|
[31]
|
A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D thesis, Cranfield University, London, 2007.
|
[32]
|
B. Qian, L. Wang, D.-X. Huang and X. Wang, Scheduling multi-objective job shops using a memetic algorithm based on differential evolution, The International Journal of Advanced Manufacturing Technology, 35 (2008), 1014-1027.
doi: 10.1007/s00170-006-0787-9.
|
[33]
|
C. N. Samuel, U. Venkatadri, C. Diallo and A. Khatab, Robust closed-loop supply chain design with presorting, return quality and carbon emission considerations, Journal of Cleaner Production, 247 (2020), 119086.
doi: 10.1016/j.jclepro.2019.119086.
|
[34]
|
L. K. Saxena, P. K. Jain and A. K. Sharma, Tactical supply chain planning for tyre remanufacturing considering carbon tax policy, The International Journal of Advanced Manufacturing Technology, 97 (2018), 1505-1528.
doi: 10.1007/s00170-018-1972-3.
|
[35]
|
B. L. Shankar, S. Basavarajappa, J. C. Chen and R. S. Kadadevaramath, Location and allocation decisions for multi-echelon supply chain network-a multi-objective evolutionary approach, Expert Systems with Applications, 40 (2013), 551-562.
doi: 10.1016/j.eswa.2012.07.065.
|
[36]
|
Y. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, in Proceedings of Twelfth IEEE International Conference on Artificial Intelligence (IJCA), Washington, D. C., USA, 1999, 1945-1950.
doi: 10.1109/CEC.1999.785511.
|
[37]
|
M. R. Sierra and C. A. C. Coello, Improving Pso-Based Multi-Objective Optimization Using Crowding, Mutation and $\varepsilon$-dominance, in, Third International Conference on Evolutionary Multi-Criterion Optimization, Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 2005.
|
[38]
|
R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications, John Wiley and Sons, New York, 1986.
|
[39]
|
M. Sun, Interactive Multiple Objective Programming Procedures Via Adaptive Random Search and Feed-Forward Artificial Neural Networks, Ph.D. dissertation, the University of Georgia, Athens, GA, 1992.
|
[40]
|
M. Sun, Some issues in measuring and reporting solution quality of interactive multiple objective programming procedures, European Journal of Operational Research, 162 (2005), 468-483.
doi: 10.1016/j.ejor.2003.08.058.
|
[41]
|
M. Sun, Multiple objective programming, in J. Wang (ed.), Encyclopedia of Business Analytics and Optimization, IGI Global, Hershey, PA, 3 (2014), 1585-1604.
|
[42]
|
J. Tang, S. Ji and L. Jiang, The design of a sustainable location-routing-inventory model considering consumer environmental behavior, Sustainability, vol. 8, no. 3,211-231, 2016.
doi: 10.3390/su8030211.
|
[43]
|
S. Treitl, P. C. Nolz, and W. Jammernegg, Incorporating environmental aspects in an inventory routing problem. a case study from the petrochemical industry, Flexible Services and Manufacturing Journal, 26 (2014), 143-169.
doi: 10.1007/s10696-012-9158-z.
|
[44]
|
S. C. Tseng and S. W. Hung, A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133 (2014), 315-322.
doi: 10.1016/j.jenvman.2013.11.023.
|
[45]
|
S. Validi, A. Bhattacharya and P. Byrne, Integrated low-carbon distribution system for the demand side of a product distribution supply chain: A DoE-guided mopso optimiser-based solution approach, International Journal of Production Research, 52 (2014), 3074-3096.
doi: 10.1080/00207543.2013.864054.
|
[46]
|
S. Prasanna Venkatesan and S. Kumanan, A multi-objective discrete particle swarm optimisation algorithm for supply chain network design, International Journal of Logistics Systems and Management, 11 (2012), 375-406.
doi: 10.1504/IJLSM.2012.045919.
|
[47]
|
C. Wang, W. Wang and R. Huang, Supply chain enterprise operations and government carbon tax decisions considering carbon emissions, Journal of Cleaner Production, 152 (2017), 271-280.
doi: 10.1016/j.jclepro.2017.03.051.
|
[48]
|
H. Wang and M. K. Lim, Two stage heuristic algorithm for logistics network optimization of integrated location-routing-inventory, in Recent Advances in Intelligent Manufacturing, Springer, 2018,209-217.
doi: 10.1007/978-981-13-2396-6_19.
|
[49]
|
M. Wang, L. Zhao and M. Herty, Modelling carbon trading and refrigerated logistics services within a fresh food supply chain under carbon cap-and-trade regulation, International Journal of Production Research, 56 (2018), 4207-4225.
|
[50]
|
S. Wang, F. Tao and Y. Shi, Optimization of location-routing problem for cold chain logistics considering carbon footprint, International Journal of Environmental Research and Public Health, 15 (2018), 86-103.
doi: 10.3390/ijerph15010086.
|
[51]
|
B. Xin, W. Peng and M. Sun, Optimal coordination strategy for international production planning and pollution abating under cap-and-trade regulations, International Journal of Environmental Research and Public Health, 16 (2019), article 3490 (21 pages).
doi: 10.3390/ijerph16183490.
|
[52]
|
J. Xu, Q. Qi and Q. Bai, Coordinating a dual-channel supply chain with price discount contracts under carbon emission capacity regulation, Applied Mathematical Modelling, 56 (2018), 449-468.
doi: 10.1016/j.apm.2017.12.018.
|
[53]
|
Z. Xu, A. Elomri, S. Pokharel, Q. Zhang, X. Ming and W. Liu, Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint, Waste Management, 64 (2017), 358-370.
doi: 10.1016/j.wasman.2017.02.024.
|
[54]
|
H. Yu, Y. Tan, J. Zeng, C. Sun and Y. Jin, Surrogate-assisted hierarchical particle swarm optimization, Information Sciences, 454 (2018), 59-72.
doi: 10.1016/j.ins.2018.04.062.
|
[55]
|
M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri and M. Mohammadi, Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, 89 (2016), 182-214.
doi: 10.1016/j.tre.2016.02.011.
|
[56]
|
M. Zhang, M. Sun, D. Bi and T. Liu, Green logistics development decision-making: Factor identification and hierarchical framework construction, IEEE Access, 2020, 127897-127912.
|
[57]
|
Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 11 (2007), 712-731.
|