-
Previous Article
A partitioning column approach for solving LED sorter manipulator path planning problems
- JIMO Home
- This Issue
-
Next Article
Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs
Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application
1. | School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China |
2. | School of Business, Suzhou University of Science and Technology, Suzhou, 215009, China |
In the grey prediction, the nonlinear Grey Bernoulli model NGBM (1, 1) is an important type. The NGBM (1, 1) has good adaptability to data fitting and then small prediction errors, and thus has been applied widely. However, if we improve the modelling method, the prediction precision shall be improved to some extent. The important factors of prediction error are the approximation of background value and the approximation of power exponent. Therefore, the paper tries to combine the optimisation of background value with the optimisation of the power exponent of NGBM (1, 1) model and then improves the model from parameter estimation. The paper gives three methods for the following three cases respectively: the background value in the form of exponential curve, the background value in the form of the polynomial curve and the background value in the form of interpolation function, to combine background value optimisation with power exponent optimisation for parameter optimisation. The final section of the paper builds the NGBM (1, 1) models of China's GDP and energy consumption with three improvement methods. The simulation and prediction results show the three improvement methods all have high precision. The methods given offer good approaches for the in-depth study on nonlinear grey Bernoulli model, enrich the method system of grey modelling and can be applied to the studies on other grey models to promote the study and wide application of the grey model.
References:
[1] |
C. I. Chen, H. L. Chen and S. P. Chen,
Forecasting of foreign exchange rates of Taiwan's major trading partners by novel nonlinear Grey Bernoulli model NGBM(1, 1), Communications in Nonlinear Science and Numerical Simulation, 13 (2008), 1194-1204.
doi: 10.1016/j.cnsns.2006.08.008. |
[2] |
Y. Y. Chen, G. W. Chen and A. H. Chiou,
Forecasting nonlinear time series using an adaptive nonlinear grey Bernoulli model: Cases of energy consumption, Journal of Grey System, 29 (2017), 75-93.
|
[3] |
M. Cheng and G. Shi,
Modeling and application of grey model GM (2, 1) based on linear difference equation, Journal of Grey System, 31 (2019), 37-50.
|
[4] |
M. Cheng and G. Shi,
Improved methods for parameter estimation of gray model GM (1, 1) based on new background value optimization and model application, Communications in Statistics - Simulation and Computation, 49 (2020), 1367-1384.
doi: 10.1080/03610918.2018.1498890. |
[5] |
M. Cheng and M. Xiang,
Generalized GM(1, 1) model and its application, Journal of Grey System, 29 (2017), 110-122.
|
[6] |
J. Cui, Y. G. Dang and S. F. Liu,
Novel grey forecasting model and its modeling mechanism, Control and Decision, 24 (2009), 1702-1706.
|
[7] |
S. Ding, Y. G. Dang, N. Xu, J. J. Wang and S. S. Geng,
Construction and optimization of a multi-variables discrete grey power model, Systems Engineering and Electronics, 40 (2018), 1302-1309.
|
[8] |
P. Hu,
GM(1, 1) power model for optimizing background values and its application, Mathematics in Practice and Theory, 47 (2017), 99-104.
|
[9] |
Y. Huang, X. Chen and Y. Wang,
Application of GM(1, 1) power model based on sum of sine in port throughput prediction, Journal of Shanghai Maritime University, 40 (2019), 69-73.
|
[10] |
J. Lan and Y. Zhou,
Death rate per million ton prediction of coal mine accidents based on improved gray Markov GM(1, 1) model, Mathematics in Practice and Theory, 44 (2014), 145-152.
|
[11] |
J. L. Li, X. P. Xiao and R. Q. Liao,
Non-Equidistance GM(1, 1) power and its application, Systems Engineering-Theory & Practice, 30 (2010), 490-495.
|
[12] |
L. Li, D. Zhang, J. Tang, J. Liu, C. Li, Z. Wang and Y. He,
Application of unequal interval GM (1, 1) power model in prediction of dissolved gases for power transformer failure, Power System Protection and Control, 45 (2017), 118-124.
|
[13] |
S. F. Li and P. Y. Chen,
Unbiased GM(1, 1) power model and its application, Statistics & Information Forum, 25 (2010), 7-10.
|
[14] |
J. S. Lu, W. D. Xie, H. B. Zhou and A. J. Zhang,
An optimized nonlinear grey Bernoulli model and its applications, Neurocomputing, 177 (2016), 206-214.
doi: 10.1016/j.neucom.2015.11.032. |
[15] |
X. Ma, Z. B. Liu and Y. Wang,
Application of a novel nonlinear multivariate grey Bernoulli model to predict the tourist income of China, Journal of Computational and Applied Mathematics, 347 (2019), 84-94.
doi: 10.1016/j.cam.2018.07.044. |
[16] |
Y. M. Ma and S. C. Wang,
Construction and application of improved GM(1, 1) power mode, Journal of Quantitative Economics, 36 (2019), 84-88.
|
[17] |
L. Pei, W. Chen, J. Bai and Z. Wang,
The improved GM (1, N) models with optimal background values: A case study of Chinese high-tech industry, Journal of Grey System, 27 (2015), 223-233.
|
[18] |
F. X. Wang, Improvement GM(1, 1) power model and its optimization, Pure and Applied Mathematics, 27 (2011), 148-150, 157. |
[19] |
Q. Wang, S. Y. Li and R. R. Li,
Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques, Energy, 161 (2018), 821-831.
doi: 10.1016/j.energy.2018.07.168. |
[20] |
Q. Wang, S. Y. Li and R. R. Li,
Will Trump's coal revival plan work? - Comparison of results based on the optimal combined forecasting technique and an extended IPAT forecasting technique, Energy, 169 (2019), 762-775.
doi: 10.1016/j.energy.2018.12.045. |
[21] |
Q. Wang, S. Y. Li, R. R. Li and M. L. Ma,
Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model, Energy, 160 (2018), 378-387.
doi: 10.1016/j.energy.2018.07.047. |
[22] |
Y. H. Wang, Y. G. Dang, Y. Q. Li and S. F. Liu,
An approach to increase prediction precision of GM(1, 1) model based on optimization of the initial condition, Expert Systems with Applications, 37 (2010), 5610-5644.
doi: 10.1016/j.eswa.2010.02.048. |
[23] |
Z. X. Wang,
GM(1, 1) power model with time-varying parameters and its application, Control and Decision, 29 (2014), 1828-1832.
|
[24] |
Z. X. Wang, Y. G. Dang, S. F. Liu and Z. W. Lian,
Solution of GM(1, 1) power model and its properties, Systems Engineering and Electronics, 31 (2009), 2380-2383.
|
[25] |
Z. Wu, J. Shuai and S. Wang,
Forecasting of Chinese copper demand based on improved gray model, Industrial Technology & Economy, 33 (2014), 9-14.
|
[26] |
N. M. Xie and S. F. Liu,
Discrete grey forecasting model and its optimization, Applied Mathematical Modelling, 33 (2009), 1173-1186.
doi: 10.1016/j.apm.2008.01.011. |
[27] |
B. H. Yang and J. S. Zhao,
Fractional order discrete grey GM(1, 1) power model and its application, Control and Decision, 30 (2015), 1264-1268.
|
[28] |
Z. Yu, C. Yang, Z. Zhang and J. Jiao,
Error correction method based on data transformational GM(1, 1) and application on tax forecasting, Applied Soft Computing, 37 (2015), 554-560.
doi: 10.1016/j.asoc.2015.09.001. |
[29] |
L. Zeng,
Grey GM(1, 1| sin) power model based on oscillation sequences and its application, Journal of Zhejiang University(Science Edition), 46 (2019), 697-704.
|
[30] |
S. J. Zhang and S. Y. Chen,
Optimization of GM(1, 1) power model and its application, Systems Engineering, 34 (2016), 154-158.
|
[31] |
J. Z. Zhou, R. C. Fang, Y. H. Li, Y. C. Zhang and B. Peng,
Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization, Applied Mathematics and Computation, 207 (2009), 292-299.
doi: 10.1016/j.amc.2008.10.045. |
show all references
References:
[1] |
C. I. Chen, H. L. Chen and S. P. Chen,
Forecasting of foreign exchange rates of Taiwan's major trading partners by novel nonlinear Grey Bernoulli model NGBM(1, 1), Communications in Nonlinear Science and Numerical Simulation, 13 (2008), 1194-1204.
doi: 10.1016/j.cnsns.2006.08.008. |
[2] |
Y. Y. Chen, G. W. Chen and A. H. Chiou,
Forecasting nonlinear time series using an adaptive nonlinear grey Bernoulli model: Cases of energy consumption, Journal of Grey System, 29 (2017), 75-93.
|
[3] |
M. Cheng and G. Shi,
Modeling and application of grey model GM (2, 1) based on linear difference equation, Journal of Grey System, 31 (2019), 37-50.
|
[4] |
M. Cheng and G. Shi,
Improved methods for parameter estimation of gray model GM (1, 1) based on new background value optimization and model application, Communications in Statistics - Simulation and Computation, 49 (2020), 1367-1384.
doi: 10.1080/03610918.2018.1498890. |
[5] |
M. Cheng and M. Xiang,
Generalized GM(1, 1) model and its application, Journal of Grey System, 29 (2017), 110-122.
|
[6] |
J. Cui, Y. G. Dang and S. F. Liu,
Novel grey forecasting model and its modeling mechanism, Control and Decision, 24 (2009), 1702-1706.
|
[7] |
S. Ding, Y. G. Dang, N. Xu, J. J. Wang and S. S. Geng,
Construction and optimization of a multi-variables discrete grey power model, Systems Engineering and Electronics, 40 (2018), 1302-1309.
|
[8] |
P. Hu,
GM(1, 1) power model for optimizing background values and its application, Mathematics in Practice and Theory, 47 (2017), 99-104.
|
[9] |
Y. Huang, X. Chen and Y. Wang,
Application of GM(1, 1) power model based on sum of sine in port throughput prediction, Journal of Shanghai Maritime University, 40 (2019), 69-73.
|
[10] |
J. Lan and Y. Zhou,
Death rate per million ton prediction of coal mine accidents based on improved gray Markov GM(1, 1) model, Mathematics in Practice and Theory, 44 (2014), 145-152.
|
[11] |
J. L. Li, X. P. Xiao and R. Q. Liao,
Non-Equidistance GM(1, 1) power and its application, Systems Engineering-Theory & Practice, 30 (2010), 490-495.
|
[12] |
L. Li, D. Zhang, J. Tang, J. Liu, C. Li, Z. Wang and Y. He,
Application of unequal interval GM (1, 1) power model in prediction of dissolved gases for power transformer failure, Power System Protection and Control, 45 (2017), 118-124.
|
[13] |
S. F. Li and P. Y. Chen,
Unbiased GM(1, 1) power model and its application, Statistics & Information Forum, 25 (2010), 7-10.
|
[14] |
J. S. Lu, W. D. Xie, H. B. Zhou and A. J. Zhang,
An optimized nonlinear grey Bernoulli model and its applications, Neurocomputing, 177 (2016), 206-214.
doi: 10.1016/j.neucom.2015.11.032. |
[15] |
X. Ma, Z. B. Liu and Y. Wang,
Application of a novel nonlinear multivariate grey Bernoulli model to predict the tourist income of China, Journal of Computational and Applied Mathematics, 347 (2019), 84-94.
doi: 10.1016/j.cam.2018.07.044. |
[16] |
Y. M. Ma and S. C. Wang,
Construction and application of improved GM(1, 1) power mode, Journal of Quantitative Economics, 36 (2019), 84-88.
|
[17] |
L. Pei, W. Chen, J. Bai and Z. Wang,
The improved GM (1, N) models with optimal background values: A case study of Chinese high-tech industry, Journal of Grey System, 27 (2015), 223-233.
|
[18] |
F. X. Wang, Improvement GM(1, 1) power model and its optimization, Pure and Applied Mathematics, 27 (2011), 148-150, 157. |
[19] |
Q. Wang, S. Y. Li and R. R. Li,
Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques, Energy, 161 (2018), 821-831.
doi: 10.1016/j.energy.2018.07.168. |
[20] |
Q. Wang, S. Y. Li and R. R. Li,
Will Trump's coal revival plan work? - Comparison of results based on the optimal combined forecasting technique and an extended IPAT forecasting technique, Energy, 169 (2019), 762-775.
doi: 10.1016/j.energy.2018.12.045. |
[21] |
Q. Wang, S. Y. Li, R. R. Li and M. L. Ma,
Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model, Energy, 160 (2018), 378-387.
doi: 10.1016/j.energy.2018.07.047. |
[22] |
Y. H. Wang, Y. G. Dang, Y. Q. Li and S. F. Liu,
An approach to increase prediction precision of GM(1, 1) model based on optimization of the initial condition, Expert Systems with Applications, 37 (2010), 5610-5644.
doi: 10.1016/j.eswa.2010.02.048. |
[23] |
Z. X. Wang,
GM(1, 1) power model with time-varying parameters and its application, Control and Decision, 29 (2014), 1828-1832.
|
[24] |
Z. X. Wang, Y. G. Dang, S. F. Liu and Z. W. Lian,
Solution of GM(1, 1) power model and its properties, Systems Engineering and Electronics, 31 (2009), 2380-2383.
|
[25] |
Z. Wu, J. Shuai and S. Wang,
Forecasting of Chinese copper demand based on improved gray model, Industrial Technology & Economy, 33 (2014), 9-14.
|
[26] |
N. M. Xie and S. F. Liu,
Discrete grey forecasting model and its optimization, Applied Mathematical Modelling, 33 (2009), 1173-1186.
doi: 10.1016/j.apm.2008.01.011. |
[27] |
B. H. Yang and J. S. Zhao,
Fractional order discrete grey GM(1, 1) power model and its application, Control and Decision, 30 (2015), 1264-1268.
|
[28] |
Z. Yu, C. Yang, Z. Zhang and J. Jiao,
Error correction method based on data transformational GM(1, 1) and application on tax forecasting, Applied Soft Computing, 37 (2015), 554-560.
doi: 10.1016/j.asoc.2015.09.001. |
[29] |
L. Zeng,
Grey GM(1, 1| sin) power model based on oscillation sequences and its application, Journal of Zhejiang University(Science Edition), 46 (2019), 697-704.
|
[30] |
S. J. Zhang and S. Y. Chen,
Optimization of GM(1, 1) power model and its application, Systems Engineering, 34 (2016), 154-158.
|
[31] |
J. Z. Zhou, R. C. Fang, Y. H. Li, Y. C. Zhang and B. Peng,
Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization, Applied Mathematics and Computation, 207 (2009), 292-299.
doi: 10.1016/j.amc.2008.10.045. |
Year | No. | Conventional Method of NGBM (1, 1) Model | Improvement Method 1 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 187318. | - | - | - | - |
2006 | 2 | 219438.5 | 238832.77 | 8.84 | 217434.79 | 0.913 |
2007 | 3 | 270092.3 | 284734.09 | 5.42 | 270086.82 | 0.00203 |
2008 | 4 | 319244.6 | 328292.04 | 2.83 | 319272.6 | 0.00877 |
2009 | 5 | 348517.7 | 372350.46 | 6.84 | 367555.16 | 5.46 |
2010 | 6 | 412119.3 | 418204.34 | 1.48 | 416204.97 | 0.991 |
2011 | 7 | 487940.2 | 466656.87 | 4.36 | 465997.29 | 4.5 |
2012 | 8 | 538580.0 | 518315.16 | 3.76 | 517476.83 | 3.92 |
2013 | 9 | 592963.2 | 573702.33 | 3.25 | 571068.67 | 3.69 |
2014 | 10 | 641280.6 | 633309.02 | 1.24 | 627132.03 | 2.21 |
2015 | 11 | 685992.9 | 697620.56 | 1.7 | 685989.35 | 5.18e-4 |
2016 | 12 | 740060.8 | 767133.24 | 3.66 | 747943.29 | 1.07 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 820754.3 | 842365.18 | 2.63 | 813287.48 | 0.9098 |
2018 | 14 | 900309.5 | 923864.46 | 2.62 | 882313.59 | 1.999 |
Average Simulation Relative Error (2005-2016) | - | 3.94 | - | 2.07 | ||
Average Prediction Relative Error (2017-2018) | - | 2.62 | - | 1.45 | ||
Average Relative Error (2005-2018) | - | 3.74 | - | 1.97 |
Year | No. | Conventional Method of NGBM (1, 1) Model | Improvement Method 1 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 187318. | - | - | - | - |
2006 | 2 | 219438.5 | 238832.77 | 8.84 | 217434.79 | 0.913 |
2007 | 3 | 270092.3 | 284734.09 | 5.42 | 270086.82 | 0.00203 |
2008 | 4 | 319244.6 | 328292.04 | 2.83 | 319272.6 | 0.00877 |
2009 | 5 | 348517.7 | 372350.46 | 6.84 | 367555.16 | 5.46 |
2010 | 6 | 412119.3 | 418204.34 | 1.48 | 416204.97 | 0.991 |
2011 | 7 | 487940.2 | 466656.87 | 4.36 | 465997.29 | 4.5 |
2012 | 8 | 538580.0 | 518315.16 | 3.76 | 517476.83 | 3.92 |
2013 | 9 | 592963.2 | 573702.33 | 3.25 | 571068.67 | 3.69 |
2014 | 10 | 641280.6 | 633309.02 | 1.24 | 627132.03 | 2.21 |
2015 | 11 | 685992.9 | 697620.56 | 1.7 | 685989.35 | 5.18e-4 |
2016 | 12 | 740060.8 | 767133.24 | 3.66 | 747943.29 | 1.07 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 820754.3 | 842365.18 | 2.63 | 813287.48 | 0.9098 |
2018 | 14 | 900309.5 | 923864.46 | 2.62 | 882313.59 | 1.999 |
Average Simulation Relative Error (2005-2016) | - | 3.94 | - | 2.07 | ||
Average Prediction Relative Error (2017-2018) | - | 2.62 | - | 1.45 | ||
Average Relative Error (2005-2018) | - | 3.74 | - | 1.97 |
2 | -946.81174 | 26774.212 | 193611.1 | 187318.9 |
3 | 1839.4352 | 23933.777 | 244319.09 | 406757.4 |
4 | -7912.4291 | 29452.082 | 297704.95 | 676849.7 |
5 | 9931.0812 | 5714.7949 | 332871.82 | 996094.3 |
6 | 2516.6044 | 35508.038 | 374094.66 | 1344612.0 |
7 | -7778.1987 | 43057.852 | 452660.55 | 1756731.3 |
8 | 3415.0903 | 19723.256 | 515441.65 | 2244671.5 |
9 | -2138.7625 | 29968.526 | 565133.44 | 2783251.5 |
10 | -925.84013 | 23552.239 | 618654.2 | 3376214.7 |
11 | 2237.0231 | 20774.718 | 662981.16 | 4017495.3 |
12 | 1333.3479 | 27485.788 | 711241.66 | 4703488.2 |
2 | -946.81174 | 26774.212 | 193611.1 | 187318.9 |
3 | 1839.4352 | 23933.777 | 244319.09 | 406757.4 |
4 | -7912.4291 | 29452.082 | 297704.95 | 676849.7 |
5 | 9931.0812 | 5714.7949 | 332871.82 | 996094.3 |
6 | 2516.6044 | 35508.038 | 374094.66 | 1344612.0 |
7 | -7778.1987 | 43057.852 | 452660.55 | 1756731.3 |
8 | 3415.0903 | 19723.256 | 515441.65 | 2244671.5 |
9 | -2138.7625 | 29968.526 | 565133.44 | 2783251.5 |
10 | -925.84013 | 23552.239 | 618654.2 | 3376214.7 |
11 | 2237.0231 | 20774.718 | 662981.16 | 4017495.3 |
12 | 1333.3479 | 27485.788 | 711241.66 | 4703488.2 |
Year | No. | Improvement Method 2 | Improvement Method 3 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 187318 | - | - | - | - |
2006 | 2 | 219438.5 | 217479.83 | 0.893 | 217472.44 | 0.896 |
2007 | 3 | 270092.3 | 270092.3 | 8.83e-8 | 270087.67 | 0.00171 |
2008 | 4 | 319244.6 | 319244.64 | 1.31e-5 | 319242.61 | 6.22e-4 |
2009 | 5 | 348517.7 | 367502.09 | 5.45 | 367502.19 | 5.45 |
2010 | 6 | 412119.3 | 416135.74 | 0.975 | 416137.41 | 0.975 |
2011 | 7 | 487940.2 | 465921.3 | 4.51 | 465923.92 | 4.51 |
2012 | 8 | 538580.0 | 517404.02 | 3.93 | 517406.92 | 3.93 |
2013 | 9 | 592963.2 | 571009.63 | 3.7 | 571012.09 | 3.7 |
2014 | 10 | 641280.6 | 627098.13 | 2.21 | 627099.39 | 2.21 |
2015 | 11 | 685992.9 | 685992.9 | 1.59e-7 | 685992.1 | 1.16e-4 |
2016 | 12 | 740060.8 | 747997.67 | 1.07 | 747993.9 | 1.07 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 820754.3 | 813407.26 | 0.895 | 813399.51 | 0.896 |
2018 | 14 | 900309.5 | 882514.71 | 1.98 | 882501.89 | 1.98 |
Average Simulation Relative Error (2005-2016) | - | 2.07 | - | 2.07 | ||
Average Prediction Relative Error (2017-2018) | - | 1.44 | - | 1.44 | ||
Average Relative Error (2005-2018) | - | 1.97 | - | 1.97 |
Year | No. | Improvement Method 2 | Improvement Method 3 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 187318 | - | - | - | - |
2006 | 2 | 219438.5 | 217479.83 | 0.893 | 217472.44 | 0.896 |
2007 | 3 | 270092.3 | 270092.3 | 8.83e-8 | 270087.67 | 0.00171 |
2008 | 4 | 319244.6 | 319244.64 | 1.31e-5 | 319242.61 | 6.22e-4 |
2009 | 5 | 348517.7 | 367502.09 | 5.45 | 367502.19 | 5.45 |
2010 | 6 | 412119.3 | 416135.74 | 0.975 | 416137.41 | 0.975 |
2011 | 7 | 487940.2 | 465921.3 | 4.51 | 465923.92 | 4.51 |
2012 | 8 | 538580.0 | 517404.02 | 3.93 | 517406.92 | 3.93 |
2013 | 9 | 592963.2 | 571009.63 | 3.7 | 571012.09 | 3.7 |
2014 | 10 | 641280.6 | 627098.13 | 2.21 | 627099.39 | 2.21 |
2015 | 11 | 685992.9 | 685992.9 | 1.59e-7 | 685992.1 | 1.16e-4 |
2016 | 12 | 740060.8 | 747997.67 | 1.07 | 747993.9 | 1.07 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 820754.3 | 813407.26 | 0.895 | 813399.51 | 0.896 |
2018 | 14 | 900309.5 | 882514.71 | 1.98 | 882501.89 | 1.98 |
Average Simulation Relative Error (2005-2016) | - | 2.07 | - | 2.07 | ||
Average Prediction Relative Error (2017-2018) | - | 1.44 | - | 1.44 | ||
Average Relative Error (2005-2018) | - | 1.97 | - | 1.97 |
Year | No. | GM (1, 1) Model | Improvement Method 3 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 261369.0 | - | - | - | - |
2006 | 2 | 286467.0 | 301511.04 | 5.25 | 286467.0 | 2.49e-10 |
2007 | 3 | 311442.0 | 314255.12 | 0.903 | 311442.0 | 1.74e-8 |
2008 | 4 | 320611.0 | 327537.85 | 2.16 | 331239.51 | 3.32 |
2009 | 5 | 336126.0 | 341382.0 | 1.56 | 348511.62 | 3.69 |
2010 | 6 | 360648.0 | 355811.32 | 1.34 | 364321.66 | 1.02 |
2011 | 7 | 387043.0 | 370850.52 | 4.18 | 379210.19 | 2.02 |
2012 | 8 | 402138.0 | 386525.39 | 3.88 | 393491.8 | 2.15 |
2013 | 9 | 416913.0 | 402862.8 | 3.37 | 407366.8 | 2.29 |
2014 | 10 | 425806.0 | 419890.74 | 1.39 | 420971.29 | 1.14 |
2015 | 11 | 429905.0 | 437638.41 | 1.8 | 434402.48 | 1.05 |
2016 | 12 | 435819.0 | 456136.2 | 4.66 | 447732.61 | 2.73 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 448529.0 | 475415.9 | 5.99 | 461017.19 | 2.78 |
2018 | 14 | 464000.0 | 495510.47 | 6.79 | 474300.09 | 2.22 |
2019 | 15 | 479312.0 | 516454.39 | 7.75 | 487616.83 | 1.73 |
Average Simulation Relative Error (2005-2016) | - | 2.77 | - | 1.76 | ||
Average Prediction Relative Error (2017-2019) | - | 6.84 | - | 2.35 | ||
Average Relative Error (2005-2019) | - | 3.64 | - | 1.88 |
Year | No. | GM (1, 1) Model | Improvement Method 3 | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 261369.0 | - | - | - | - |
2006 | 2 | 286467.0 | 301511.04 | 5.25 | 286467.0 | 2.49e-10 |
2007 | 3 | 311442.0 | 314255.12 | 0.903 | 311442.0 | 1.74e-8 |
2008 | 4 | 320611.0 | 327537.85 | 2.16 | 331239.51 | 3.32 |
2009 | 5 | 336126.0 | 341382.0 | 1.56 | 348511.62 | 3.69 |
2010 | 6 | 360648.0 | 355811.32 | 1.34 | 364321.66 | 1.02 |
2011 | 7 | 387043.0 | 370850.52 | 4.18 | 379210.19 | 2.02 |
2012 | 8 | 402138.0 | 386525.39 | 3.88 | 393491.8 | 2.15 |
2013 | 9 | 416913.0 | 402862.8 | 3.37 | 407366.8 | 2.29 |
2014 | 10 | 425806.0 | 419890.74 | 1.39 | 420971.29 | 1.14 |
2015 | 11 | 429905.0 | 437638.41 | 1.8 | 434402.48 | 1.05 |
2016 | 12 | 435819.0 | 456136.2 | 4.66 | 447732.61 | 2.73 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 448529.0 | 475415.9 | 5.99 | 461017.19 | 2.78 |
2018 | 14 | 464000.0 | 495510.47 | 6.79 | 474300.09 | 2.22 |
2019 | 15 | 479312.0 | 516454.39 | 7.75 | 487616.83 | 1.73 |
Average Simulation Relative Error (2005-2016) | - | 2.77 | - | 1.76 | ||
Average Prediction Relative Error (2017-2019) | - | 6.84 | - | 2.35 | ||
Average Relative Error (2005-2019) | - | 3.64 | - | 1.88 |
Year | No. | Improvement Method Proposed by Zhang and Chen [30] | Improvement Method Proposed by Ma and Wang [16] | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 261369.0 | - | - | - | - |
2006 | 2 | 286467.0 | 267260.08 | 6.7 | 264410.21 | 7.7 |
2007 | 3 | 311442.0 | 302546.19 | 2.86 | 301168.24 | 3.3 |
2008 | 4 | 320611.0 | 329138.11 | 2.66 | 328840.42 | 2.57 |
2009 | 5 | 336126.0 | 350612.31 | 4.31 | 351024.11 | 4.43 |
2010 | 6 | 360648.0 | 368636.25 | 2.21 | 369441.76 | 2.44 |
2011 | 7 | 387043.0 | 384142.61 | 0.749 | 385074.85 | 0.509 |
2012 | 8 | 402138.0 | 397713.35 | 1.1 | 398544.77 | 0.894 |
2013 | 9 | 416913.0 | 409739.41 | 1.72 | 410274.19 | 1.59 |
2014 | 10 | 425806.0 | 420497.92 | 1.25 | 420565.97 | 1.23 |
2015 | 11 | 429905.0 | 430193.48 | 0.0671 | 429645.9 | 0.0603 |
2016 | 12 | 435819.0 | 438982.1 | 0.726 | 437687.7 | 0.429 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 448529.0 | 446985.87 | 0.344 | 444828.45 | 0.825 |
2018 | 14 | 464000.0 | 454302.42 | 2.09 | 451178.59 | 2.76 |
2019 | 15 | 479312.0 | 461011.22 | 3.82 | 456828.7 | 4.69 |
Average Simulation Relative Error (2005-2016) | - | 2.21 | - | 2.29 | ||
Average Prediction Relative Error (2017-2019) | - | 2.08 | - | 2.76 | ||
Average Relative Error (2005-2019) | - | 2.18 | - | 2.39 |
Year | No. | Improvement Method Proposed by Zhang and Chen [30] | Improvement Method Proposed by Ma and Wang [16] | |||
Simulation Value | Relative Error % | Simulation Value | Relative Error % | |||
2005 | 1 | 261369.0 | - | - | - | - |
2006 | 2 | 286467.0 | 267260.08 | 6.7 | 264410.21 | 7.7 |
2007 | 3 | 311442.0 | 302546.19 | 2.86 | 301168.24 | 3.3 |
2008 | 4 | 320611.0 | 329138.11 | 2.66 | 328840.42 | 2.57 |
2009 | 5 | 336126.0 | 350612.31 | 4.31 | 351024.11 | 4.43 |
2010 | 6 | 360648.0 | 368636.25 | 2.21 | 369441.76 | 2.44 |
2011 | 7 | 387043.0 | 384142.61 | 0.749 | 385074.85 | 0.509 |
2012 | 8 | 402138.0 | 397713.35 | 1.1 | 398544.77 | 0.894 |
2013 | 9 | 416913.0 | 409739.41 | 1.72 | 410274.19 | 1.59 |
2014 | 10 | 425806.0 | 420497.92 | 1.25 | 420565.97 | 1.23 |
2015 | 11 | 429905.0 | 430193.48 | 0.0671 | 429645.9 | 0.0603 |
2016 | 12 | 435819.0 | 438982.1 | 0.726 | 437687.7 | 0.429 |
Prediction Value | Relative Error % | Prediction Value | Relative Error % | |||
2017 | 13 | 448529.0 | 446985.87 | 0.344 | 444828.45 | 0.825 |
2018 | 14 | 464000.0 | 454302.42 | 2.09 | 451178.59 | 2.76 |
2019 | 15 | 479312.0 | 461011.22 | 3.82 | 456828.7 | 4.69 |
Average Simulation Relative Error (2005-2016) | - | 2.21 | - | 2.29 | ||
Average Prediction Relative Error (2017-2019) | - | 2.08 | - | 2.76 | ||
Average Relative Error (2005-2019) | - | 2.18 | - | 2.39 |
[1] |
Zhigang Ren, Shan Guo, Zhipeng Li, Zongze Wu. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1579-1594. doi: 10.3934/jimo.2018022 |
[2] |
Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191 |
[3] |
Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601 |
[4] |
Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553 |
[5] |
Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic and Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9 |
[6] |
Marcello Delitala, Tommaso Lorenzi. A mathematical model for value estimation with public information and herding. Kinetic and Related Models, 2014, 7 (1) : 29-44. doi: 10.3934/krm.2014.7.29 |
[7] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[8] |
Bo Jiang, Yongge Tian. On best linear unbiased estimation and prediction under a constrained linear random-effects model. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021209 |
[9] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
[10] |
J.W. Bruce, F. Tari. Generic 1-parameter families of binary differential equations of Morse type. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 79-90. doi: 10.3934/dcds.1997.3.79 |
[11] |
Stephen C. Preston, Ralph Saxton. An $H^1$ model for inextensible strings. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2065-2083. doi: 10.3934/dcds.2013.33.2065 |
[12] |
Sebastian Springer, Heikki Haario, Vladimir Shemyakin, Leonid Kalachev, Denis Shchepakin. Robust parameter estimation of chaotic systems. Inverse Problems and Imaging, 2019, 13 (6) : 1189-1212. doi: 10.3934/ipi.2019053 |
[13] |
Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems and Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447 |
[14] |
Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493 |
[15] |
Kaikai Cao, Youming Liu. Uncompactly supported density estimation with $ L^{1} $ risk. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4007-4022. doi: 10.3934/cpaa.2020177 |
[16] |
Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007 |
[17] |
Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44 |
[18] |
Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79 |
[19] |
Hsin-Yuan Huang. Vortex Condensation in General U(1)×U(1) Abelian Chern-Simons Model on a flat torus. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4415-4428. doi: 10.3934/dcdsb.2021234 |
[20] |
Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]