\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A partitioning column approach for solving LED sorter manipulator path planning problems

  • * Corresponding author: Sheng-I Chen

    * Corresponding author: Sheng-I Chen 

The study is supported by MOST, Taiwan grant 109-2221-E-009-065-

Abstract Full Text(HTML) Figure(5) / Table(8) Related Papers Cited by
  • This study considers the path planning problem of picking light-emitting diodes on a silicon wafer. The objective is to find the shortest walk for the sorter manipulator covering all nodes in a fully connected graph. We propose a partitioning column approach to reduce the original graph's size, where adjacent nodes at the same column are seen as a required edge, and the connection of vertices at different required edges is viewed as a non-required edge. The path planning problem turns to find the shortest closed walk to traverse required edges and is modeled as a rural postman problem with a solvable problem size. We formulate a mixed-integer program to obtain the exact solution for the transformed graph. We compare the proposed method with a TSP solver, Concorde. The result shows that our approach significantly reduces the problem size and obtains a near-optimal solution. For large problem instances, the proposed method can obtain a feasible solution in time, but not for the benchmarking solver.

    Mathematics Subject Classification: 05A18, 05C45, 90B06, 90C11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The problem instances of LED distribution

    Figure 2.  The optimal path for the transformed graph

    Figure 3.  The example for partitioning columns

    Figure 4.  The worst case of discarded diodes

    Figure 5.  The coverage percentages of diodes in transformed graphs using different maximum mismatch ratios

    Table 1.  Notations

    Mu The $ y-position $ of the uppermost diode
    Ml The $ y-position $ of the lowermost diode
    r The maximum mismatch ratio
    nx The number of LEDs at the $ \textit{x-th} $ column
    $ \theta $ The threshold of empty positions in the column $ (\theta=\lceil\textit{nx}r\rceil) $
    $ \bar{b} $ The lower bound of the upper component (initialized as Mu)
    $ \underline{b} $ The upper bound of the lower component (initialized as Ml)
    $ \textbf{X} $ The collection of diode's $ \textit{y-position} $
    $ \textbf{Y} $ The set of grades of diodes
    $ \textbf{g} $ A function mapping $ \textbf{X} $ into $ \textbf{Y} $
     | Show Table
    DownLoad: CSV

    Table 2.  The procedure to find component boundaries

    1.    Set $ \bar{b} = i_{1} = M_{u}, \underline{b} = i_{2} = M_{1}, i = 0, \theta = \lceil n_{x} r \rceil $, and $ d = True; $
    2.    If($ M_{u}-M_{l}+1 $)$ -n_{x} >\theta $
    3.       While $ i <\vert n_{x} \vert $ and $ \theta > 0 $
    4.          If $ d = True $ then
    5.             If $ g(i_{1}) = g(i_{1}-1) $ then
    6.                $ \bar{b}:=i_{1}-1; $
    7.             Else
    8.                $ d = False; $
    9.                $ \theta$ – –;
    10.             End if
    11.             $ i{1} $ – –;
    12.          Else
    13.             If $ g(i_{2})=g(i_{2}+1) $ then
    14.                $ \underline{b}:=i_{2}+1; $
    15.             Else
    16.                $ d = True; $
    17.                $ \theta $ – –;
    18.             End if
    19.             $ i_{2}++; $
    20.          End if
    21.          $ i++; $
    22.       End while
    23.    End if
     | Show Table
    DownLoad: CSV

    Table 3.  The size of the original and transformed problems (maximum mismatch ratio = 0.3)

    Instance Original problem size Transformed problem size Reduction
    $ \vert \boldsymbol{V} \vert $ $ \vert \boldsymbol{E} \vert $ $ \vert \boldsymbol{V_{r}} \vert $ $ \vert \boldsymbol{E_{r}} \vert $ $ 1-\vert \boldsymbol{V_{r}} \vert / \vert \textbf{V} \vert $ $ 1-\vert \boldsymbol{E_{r}} \vert / \vert \textbf{E} \vert $
    Grade1 48 2,256 30 870 38% 61%
    Grade2 74 5,402 108 11,556 -46% -114%
    Grade3 118 13,806 80 6,320 32% 54%
    Grade4 396 156,420 126 15,750 68% 90%
    Grade5 1,849 3,416,952 226 50,850 88% 99%
    Grade6 3,921 15,370,320 164 26,732 96% 100%
     | Show Table
    DownLoad: CSV

    Table 4.  Vertex reduction percentages in transformed graphs using different mismatch ratios

    Instance $ r=0.01 $ $ r=0.05 $ $ r=0.1 $ $ r=0.15 $ $ r=0.2 $ $ r=0.25 $ $ r=0.3 $ $ r=0.33 $ $ r=0.35 $ $ r=0.5 $ $ r=0.65 $
    Grade1 33% 33% 33% 38% 38% 38% 38% 38% 38% 38% 38%
    Grade2 -46% -46% -46% -46% -46% -46% -46% -46% -46% -46% -46%
    Grade3 32% 32% 32% 32% 32% 32% 32% 32% 32% 32% 32%
    Grade4 67% 67% 67% 67% 67% 68% 68% 68% 68% 68% 69%
    Grade5 87% 87% 87% 87% 88% 88% 88% 88% 88% 88% 88%
    Grade6 95% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96%
     | Show Table
    DownLoad: CSV

    Table 5.  Edge reduction percentages in transformed graphs using different maximum mismatch ratios

    Instance $ r=0.01 $ $ r=0.05 $ $ r=0.1 $ $ r=0.15 $ $ r=0.2 $ $ r=0.25 $ $ r=0.3 $ $ r=0.33 $ $ r=0.35 $ $ r=0.5 $ $ r=0.65 $
    Grade1 55% 55% 55% 61% 61% 61% 61% 61% 61% 61% 61%
    Grade2 -114% -114% -114% -114% -114% -114% -114% -114% -114% -114% -114%
    Grade3 54% 54% 54% 54% 54% 54% 54% 54% 54% 54% 54%
    Grade4 89% 89% 89% 89% 89% 90% 90% 90% 90% 90% 90%
    Grade5 98% 98% 98% 98% 98% 98% 98% 99% 99% 99% 99%
    Grade6 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
     | Show Table
    DownLoad: CSV

    Table 6.  Computational results of solving the original and transformed problems

    Instance Partitioning column MTZ formulation
    Run time(s) Total cost MIPGap Run time(s) Total cost MIPGap
    Grade1 <1 227 0% 7,200 229 42%
    Grade2 14 386 0% 184 386 0%
    Grade3 8 393 0% 7,200 444 61%
    Grade4 78 660 0% $ - $ $ - $ $ - $
    Grade5 260 2,078 0% $ - $ $ - $ $ - $
    Grade6 6,356 4,205 0% $ - $ $ - $ $ - $
     | Show Table
    DownLoad: CSV

    Table 7.  Comparing the performance of Concorde in solving problem instances with integral and fractional edge distances

    Instance Concord
    (with rounding to the nearest integer)
    Concorde
    (with four decimal place)
    Run time(s) Total cost Rounding Error % Run time(s) Total cost
    Grade1 <1 227 0% 1 227
    Grade2 <1 386 0% 1 386
    Grade3 1 393 0% 1 394
    Grade4 5 582 4% 18 605
    Grade5 $ - $ $ - $ $ - $ $ - $ $ - $
    Grade6 42 3,926 $ - $ $ - $ $ - $
     | Show Table
    DownLoad: CSV

    Table 8.  The benchmark of Concorde and the proposed algorithm using Manhattan and Euclidean distances

    Instance Euclidean distance Manhattan distance
    Concorde Proposed algorithm Concorde Proposed algorithm
    Grade1 227 227 258 258
    Grade2 386 386 462 462
    Grade3 394 393 430 428
    Grade4 605 660 692 742
    Grade5 $ - $ 2,078 $ - $ 2,154
    Grade6 $ - $ 4,205 $ - $ 4,286
     | Show Table
    DownLoad: CSV
  • [1] D. ApplegateR. BixbyV. Chvátal and W. Cook, Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems, Mathematical Programming, 97 (2003), 91-153.  doi: 10.1007/s10107-003-0440-4.
    [2] S. AryaD. M. MountN. S. NetanyahuR. Silverman and A. Y. Wu, An optimal algorithm for approximate nearest neighbor searching, Journal of the ACM, 45 (1998), 891-923.  doi: 10.1145/293347.293348.
    [3] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report, 388, Graduate School of Industrial Administration, CMU, 1976.
    [4] N. Christofides, V. Campos, A. Corberan and E. Mota, An Algorithm for the Rural Postman Problem, , Imperical College, London, England, Tech. Report, 1981.
    [5] W. Cook, Concorde TSP solver, Available at: http://www.math.uwaterloo.ca/tsp/concorde/index.html. [Accessed on March 29, 2019], 2006.
    [6] A. Corberan and J. M. Sanchis, A polyhedral approach to therural postman problem, European Journal of Operational Research, 79 (1994), 95-114.  doi: 10.1016/0377-2217(94)90398-0.
    [7] G. CornuéjolsJ. Fonlupt and D. Naddef, The traveling salesman problem on a graph and some related integer polyhedra, Mathematical Programming, 33 (1985), 1-27.  doi: 10.1007/BF01582008.
    [8] H. Crowder and M. W. Padberg, Solving large-scale symmetric travelling salesman problems to optimality, Management Science, 26 (1980), 495-509.  doi: 10.1287/mnsc.26.5.495.
    [9] M. Drexl, On the generalized directed rural postman problem, Journal of the Operational Research Society, 65 (2014), 1143-1154.  doi: 10.1057/jors.2013.60.
    [10] M. Dror, Arc Routing: Theory, Solutions, and Applications, Kluwer, Boston, MA, 2000. doi: 10.1007/978-1-4615-4495-1.
    [11] H. A. EiseltM. Gendreau and G. Laporte, Arc routing problems, part Ⅱ: The rural postman problem, Operations Research, 43 (1995), 399-414.  doi: 10.1287/opre.43.3.399.
    [12] J. Edmond and E. L. Johnson, Matching, Euler tour and the chinese postman problem, Mathematical Programming, 5 (1973), 88-124.  doi: 10.1007/BF01580113.
    [13] E. FernándezO. MezaR. Garfinkel and M. Ortega, On the undirected rural postman problem: Tight bounds based on a new formulation, Operations Research, 51 (2003), 281-291.  doi: 10.1287/opre.51.2.281.12790.
    [14] J. Fonlupt and A. Nachef, Dynamic programming and the graphical traveling salesman problem, Journal of the ACM (JACM), 40 (1993), 1165-1187.  doi: 10.1145/174147.169803.
    [15] R. W. Folyd, Algorithm 97: Shortest path, Communications of the ACM, 5 (1962), 345. doi: 10.1145/367766.368168.
    [16] R. S. Garfinkel and I. R. Webb, On crossings, the crossing postman problem, and the rural postman problem, Networks: An International Journal, 34 (1999), 173-180.  doi: 10.1002/(SICI)1097-0037(199910)34:3<173::AID-NET1>3.0.CO;2-W.
    [17] R. KalaA. Shukla and R. Tiwari, Robotic path planning using evolutionary momentum-based exploration, Journal of Experimental and Theoretical Artificial Intelligence, 23 (2011), 469-495.  doi: 10.1080/0952813X.2010.490963.
    [18] E. L. Lawler, J. K. Lenstra, A. R. Kan and D. B. Shmoys, The traveling salesman problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, Ltd., Chichester, 1985.
    [19] S. Lin and B. W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem, Operations Research, 21 (1973), 498-516.  doi: 10.1287/opre.21.2.498.
    [20] C. E. MillerA. W. Tucker and R. A. Zemlin, Integer programming formulation of traveling salesman problems, Journal of the ACM, 7 (1960), 326-329.  doi: 10.1145/321043.321046.
    [21] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review, 33 (1991), 60-100.  doi: 10.1137/1033004.
    [22] RosenkrantzStearnsLewis and II, An analysis of several heuristics for the traveling salesman problem, SIAM Journal on Computing, 6 (1977), 563-581.  doi: 10.1137/0206041.
    [23] J. SankaranarayananH. Samet and A. Varshney, A fast all nearest neighbor algorithm for applications involving large point-clouds, Computers and Graphics, 31 (2007), 157-174.  doi: 10.1016/j.cag.2006.11.011.
    [24] W. ShengN. XiM. Song and Y. Chen, Robot path planning for dimensional measurement in automotive manufacturing, Journal of Manufacturing Science and Engineering, 127 (2005), 420-428.  doi: 10.1115/1.1870013.
    [25] T. Wu, B. Li, L. Wang and Y. Huang, Study on path-optimization by grade sorting dies, In IEEE International Conference on Mechatronics and Automation, (2010), 876–880. doi: 10.1109/ICMA.2010.5589000.
  • 加载中

Figures(5)

Tables(8)

SHARE

Article Metrics

HTML views(1227) PDF downloads(538) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return