[1]
|
B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, The Journal of Finance, 59 (2004), 1367-1403.
doi: 10.1111/j.1540-6261.2004.00666.x.
|
[2]
|
J. P. Fouque, G. Papanicolaou and K. R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations aux Derivees Partielles et Applications, in honour of Jacques-Louis Lions, (1998), 517–525.
|
[3]
|
J. P. Fouque, G. Papanicolaou and K. R. Sircar, Mean-reverting stochastic volatility, International Journal of Theoretical and Applied Finance, 3 (2000), 101-142.
doi: 10.1142/S0219024900000061.
|
[4]
|
J. P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale Stochastic Volatility for
Equity, Interest Rate, and Credit Derivatives, Cambridge: Cambridge University Press, 2011.
doi: 10.1017/CBO9781139020534.
|
[5]
|
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[6]
|
M. W. Hung and Y. H. Liu, Pricing vulnerable options in incomplete markets, The Journal of Future Markets, 25 (2005), 135-170.
doi: 10.1002/fut.20136.
|
[7]
|
J. Hull and A. White, The impact of default risk on the prices of options and other derivative securities, Journal of Banking and Finance, 19 (1995), 299-322.
doi: 10.1016/0378-4266(94)00050-D.
|
[8]
|
R. A. Jarrow and S. M. Turnbull, Pricing derivatives on financial securities subject to credit risk, The Journal of Finance, 50 (1995), 53-85.
doi: 10.1111/j.1540-6261.1995.tb05167.x.
|
[9]
|
H. Johnson and R. Stulz, The pricing of options with default risk, The Journal of Finance, 42 (1987), 267-280.
doi: 10.1111/j.1540-6261.1987.tb02567.x.
|
[10]
|
P. Klein, Pricing black-scholes options with correlated credit risk, Journal of Banking and Finance, 20 (1996), 1211-1229.
doi: 10.1016/0378-4266(95)00052-6.
|
[11]
|
P. Klein and M. Inglis, Valuation of European options subject to financial distress and interest rate risk, The Journal of Derivatives, 6 (1999), 44-56.
doi: 10.3905/jod.1999.319118.
|
[12]
|
P. Klein and M. Inglis, Pricing vulnerable European options when the option's payoff can increase the risk of financial distress, Journal of Banking & Finance, 25 (2001), 993-1012.
doi: 10.1016/S0378-4266(00)00109-6.
|
[13]
|
P. Klein and J. Yang, Vulnearable American options, Managerial Finance, 36 (2010), 414-430.
|
[14]
|
S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.
doi: 10.1287/mnsc.48.8.1086.166.
|
[15]
|
S. I. Liu and Y. C. Liu, Pricing vulnerable options by binomial trees, Available at SSRN 1365864 (2009).
doi: 10.2139/ssrn.1365864.
|
[16]
|
C. Ma, S. Yue and Y. Ren, Pricing vulnerable European options under lévy process with stochastic volatility, Discrete Dynamics in Nature and Society, (2018), 3402703, 16 pp.
doi: 10.1155/2018/3402703.
|
[17]
|
A. Melino and S. M. Turnbull, Pricing foreign currency options with stochastic volatility, Jounral of Econometrics, 45 (1990), 239-265.
doi: 10.1016/0304-4076(90)90100-8.
|
[18]
|
R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2.
|
[19]
|
N. Cai and S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
doi: 10.1287/mnsc.1110.1393.
|
[20]
|
H. Niu and D. Wang, Pricing vulnerable European options under a two-sided jump model via Laplace transform, Scientia Sinica Mathematica, 45 (2015), 195-212.
doi: 10.1360/012015-3.
|
[21]
|
H. Niu, and D. Wang, Pricing vulnerable options with correlated jump-diffusion processes
depending on various states of the economy, Quantitative Finance, 16 (2016), 1129-1145.
doi: 10.1080/14697688.2015.1090623.
|
[22]
|
G. Petrella, An extension of the Euler Laplace transform inversion algorithm with applications in option pricing, Operations Research Letters, 32 (2004), 380-389.
doi: 10.1016/j.orl.2003.06.004.
|
[23]
|
A. G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operator, The American Mathematical Monthly, 108 (2001), 855-860.
doi: 10.1080/00029890.2001.11919820.
|
[24]
|
S. E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Vol. 11, Springer Science & Business Media, 2004.
|
[25]
|
L. Tian, G. Wang, X. Wang and Y. Wang, Pricing vulnerable options with correlated credit risk under jump-diffusion processes, The Journal of Futures Markets, 34 (2014), 957-979.
doi: 10.1002/fut.21629.
|
[26]
|
G. Wang, X. Wang and K. Zhou, Pricing vulnerable options with stochastic volatility, Physica A: Statistical Mechanics and its Applications, 485 (2017), 91-103.
doi: 10.1016/j.physa.2017.04.146.
|
[27]
|
W. Xu, W. Xu, H. Li and W. Xiao, A jump-diffusion approach to modelling vulnerable option pricing, Finance Research Letters, 9 (2012), 48-56.
doi: 10.1016/j.frl.2011.07.001.
|
[28]
|
S. J. Yang, M. K. Lee and J. H. Kim, Pricing vulnerable options under a stochastic volatility model, Applied Mathematics Letters, 34 (2014), 7-12.
doi: 10.1016/j.aml.2014.03.007.
|