
-
Previous Article
Integration of cuckoo search and fuzzy support vector machine for intelligent diagnosis of production process quality
- JIMO Home
- This Issue
-
Next Article
Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism
New Z-eigenvalue localization sets for tensors with applications
School of Mathematics, Zunyi Normal College, Zunyi, Guizhou 563006, China |
In this paper, let $ \mathcal{A} = (a_{i_1 i_2 \cdots i_m } )\in{\mathbb{R}}^{[m, n]} $, when $ m\geq 4 $, based on the condition $ ||x||_2 = 1 $, a new $ Z $-eigenvalue localization set for tensors is given. And we extend the Geršhgorin-type localization set for Z-eigenvalues of fourth order tensors to higher order tensors. As an application, a sharper upper bound for the Z-spectral radius of nonnegative tensors is obtained. Let $ \mathcal{H} $ be a $ k $-uniform hypergraph with $ k\geq 4 $ and $ \mathcal{A}(\mathcal{H}) $ be the adjacency tensor of $ \mathcal{H} $, a new upper bound for the Z-spectral radius $ \rho (\mathcal{H}) $ is also presented. Finally, a checkable sufficient condition for the positive definiteness of even-order tensors and asymptotically stability of time-invariant polynomial systems is also given.
References:
[1] |
C. Bu, Y. Fan and J. Zhou,
Laplacian and signless Laplacian $Z$-eigenvalues of uniform hypergraphs, Front. Math. China, 11 (2016), 511-520.
doi: 10.1007/s11464-015-0467-x. |
[2] |
K. C. Chang, K. J. Pearson and T. Zhang,
Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[3] |
K. C. Chang and T. Zhang,
On the uniqueness and non-uniqueness of the positive ${Z}$-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408 (2013), 525-540.
doi: 10.1016/j.jmaa.2013.04.019. |
[4] |
C. Deng, H. Li and C. Bu,
Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.
doi: 10.1016/j.laa.2018.06.032. |
[5] |
J. He and T.-Z. Huang,
Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[6] |
J. He, Y. Liu and G. Xu,
$Z$-eigenvalues-based sufficient conditions for the positive deffiniteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1069-1093.
doi: 10.1007/s40840-019-00727-7. |
[7] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[8] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[9] |
C. Li, A. Jiao and Y. Li,
An $S$-type eigenvalue localization set for tensors, Linear Algebra Appl., 493 (2016), 469-483.
doi: 10.1016/j.laa.2015.12.018. |
[10] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[11] |
C. Li, Y. Liu and Y. Li,
Note on $Z$-eigenvalue inclusion theorems for tensors, J. Ind. Manag. Optim., 17 (2021), 687-693.
doi: 10.3934/jimo.2019129. |
[12] |
W. Li, W. Liu and S.-W. Vong,
Some bounds for $H$-eigenpairs and $Z$-eigenpairs of a tensor, J. Comput. Appl. Math., 342 (2018), 37-57.
doi: 10.1016/j.cam.2018.03.024. |
[13] |
W. Li, D. Liu and S.-W. Vong,
$Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[14] |
Q. Liu and Y. Li,
Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.
doi: 10.1515/math-2016-0017. |
[15] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[16] |
C. Sang,
A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[17] |
C. Sang and Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020) 323–339.
doi: 10.1007/s10440-019-00300-1. |
[18] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[19] |
L. Sun, G. Wang and L. Liu,
Further study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.
doi: 10.1007/s40840-020-00939-2. |
[20] |
Y. Wang and G. Wang, Two S-type $S$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), 152, 12 pp.
doi: 10.1186/s13660-017-1428-6. |
[21] |
G. Wang, G. Zhou and L. Caccetta,
$Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
[22] |
J. Xie and A. Chang,
On the $Z$-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra Appl., 439 (2013), 2195-2204.
doi: 10.1016/j.laa.2013.07.016. |
[23] |
J. Xie and A. Chang,
On the $Z$-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl., 20 (2013), 1030-1045.
doi: 10.1002/nla.1910. |
[24] |
J. Zhao, A new $Z$–eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), 85, 9 pp.
doi: 10.1186/s13660-017-1363-6. |
show all references
References:
[1] |
C. Bu, Y. Fan and J. Zhou,
Laplacian and signless Laplacian $Z$-eigenvalues of uniform hypergraphs, Front. Math. China, 11 (2016), 511-520.
doi: 10.1007/s11464-015-0467-x. |
[2] |
K. C. Chang, K. J. Pearson and T. Zhang,
Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[3] |
K. C. Chang and T. Zhang,
On the uniqueness and non-uniqueness of the positive ${Z}$-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408 (2013), 525-540.
doi: 10.1016/j.jmaa.2013.04.019. |
[4] |
C. Deng, H. Li and C. Bu,
Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.
doi: 10.1016/j.laa.2018.06.032. |
[5] |
J. He and T.-Z. Huang,
Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[6] |
J. He, Y. Liu and G. Xu,
$Z$-eigenvalues-based sufficient conditions for the positive deffiniteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1069-1093.
doi: 10.1007/s40840-019-00727-7. |
[7] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[8] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[9] |
C. Li, A. Jiao and Y. Li,
An $S$-type eigenvalue localization set for tensors, Linear Algebra Appl., 493 (2016), 469-483.
doi: 10.1016/j.laa.2015.12.018. |
[10] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[11] |
C. Li, Y. Liu and Y. Li,
Note on $Z$-eigenvalue inclusion theorems for tensors, J. Ind. Manag. Optim., 17 (2021), 687-693.
doi: 10.3934/jimo.2019129. |
[12] |
W. Li, W. Liu and S.-W. Vong,
Some bounds for $H$-eigenpairs and $Z$-eigenpairs of a tensor, J. Comput. Appl. Math., 342 (2018), 37-57.
doi: 10.1016/j.cam.2018.03.024. |
[13] |
W. Li, D. Liu and S.-W. Vong,
$Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[14] |
Q. Liu and Y. Li,
Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.
doi: 10.1515/math-2016-0017. |
[15] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[16] |
C. Sang,
A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[17] |
C. Sang and Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020) 323–339.
doi: 10.1007/s10440-019-00300-1. |
[18] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[19] |
L. Sun, G. Wang and L. Liu,
Further study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.
doi: 10.1007/s40840-020-00939-2. |
[20] |
Y. Wang and G. Wang, Two S-type $S$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), 152, 12 pp.
doi: 10.1186/s13660-017-1428-6. |
[21] |
G. Wang, G. Zhou and L. Caccetta,
$Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
[22] |
J. Xie and A. Chang,
On the $Z$-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra Appl., 439 (2013), 2195-2204.
doi: 10.1016/j.laa.2013.07.016. |
[23] |
J. Xie and A. Chang,
On the $Z$-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl., 20 (2013), 1030-1045.
doi: 10.1002/nla.1910. |
[24] |
J. Zhao, A new $Z$–eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), 85, 9 pp.
doi: 10.1186/s13660-017-1363-6. |


Example 2 | Example 3 | |
3.1092 | 7.3525 | |
Bound (2) | 5.3333 | 40 |
Bound (3) | 5.0437 | 25 |
Bound (4) | 5.2846 | - |
Bound (5) | 5.1935 | - |
Theorem 4.2 of [12] | 4.4632 | - |
Theorem 3.1 | 4 |
Example 2 | Example 3 | |
3.1092 | 7.3525 | |
Bound (2) | 5.3333 | 40 |
Bound (3) | 5.0437 | 25 |
Bound (4) | 5.2846 | - |
Bound (5) | 5.1935 | - |
Theorem 4.2 of [12] | 4.4632 | - |
Theorem 3.1 | 4 |
[1] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[2] |
Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021075 |
[3] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[4] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[5] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[6] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[7] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[8] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[9] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[10] |
Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068 |
[11] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 |
[12] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[13] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[14] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075 |
[15] |
Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021012 |
[16] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[17] |
Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076 |
[18] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[19] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[20] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]