
-
Previous Article
Robust control in green production management
- JIMO Home
- This Issue
-
Next Article
Stability of a class of risk-averse multistage stochastic programs and their distributionally robust counterparts
Decision framework for location and selection of container multimodal hubs: A case in china under the belt and road initiative
College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China |
The location and selection of logistics nodes that facilitate the China Railway Express and rail-sea intermodal transportation has received increasing attention in China under the Belt and Road Initiative. The objective is to solve problems caused by the increasing number of origin cities opening international trains, such as disorderly competition, insufficient cargoes and low overall coordination. This study screens 22 cities as candidate Chinese international container multimodal hubs (CICMHs) in consideration of the actual situation of China's trade transportation. Thirteen indicators are screened using the information contribution rate-information substitutability method. Then, a comprehensive evaluation model is proposed to evaluate the candidate CICMHs and rank them. The model is based on the extended grey relational analysis-technique for order preference similar to ideal solution in combination with prospect theory. Chongqing, Guangzhou, Shanghai, Wuhan, Chengdu, Xi'an, Nanjing, Tianjin, Zhengzhou and Dalian are selected as the CICMHs. Moreover, a sensitivity analysis of the index weight fluctuations and decision-makers' preference and a comparative analysis of different decision-making methods are performed. The robustness and stability of the proposed model are demonstrated. This study can support the location and selection of CICMHs and expand the methods and applications in the decision-making field.
References:
[1] |
R. P. Brooker and N. Qin,
Identification of potential locations of electric vehicle supply equipment, Journal of Power Sources, 299 (2015), 76-84.
doi: 10.1016/j.jpowsour.2015.08.097. |
[2] |
J. W. K. Chan and T. K. L. Tong,
Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach, Materials & Design, 28 (2007), 1539-1546.
doi: 10.1016/j.matdes.2006.02.016. |
[3] |
G. Chen, W. Cheung, S.-C. Chu and L. Xu,
Transshipment hub selection from a shipper's and freight forwarder's perspective, Expert Systems with Applications, 83 (2017), 396-404.
doi: 10.1016/j.eswa.2017.04.044. |
[4] |
M.-F. Chen and G.-H. Tzeng,
Combining grey relation and TOPSIS concepts for selecting an expatriate host country, Mathematical and Computer Modelling, 40 (2004), 1473-1490.
doi: 10.1016/j.mcm.2005.01.006. |
[5] |
S. K. Das, M. Pervin, S. K. Roy and G.-W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: A hybrid approach, Annals of Operations Research, (2021).
doi: 10.1007/s10479-020-03809-z. |
[6] |
S. K. Das and S. K. Roy, Effect of variable carbon emission in a multiobjective transportation-p-facility location problem under neutrosophic environment, Computers & Industrial Engineering, 132 (2019), 311-324. Google Scholar |
[7] |
S. K. Das, S. K. Roy and G.-W. Weber,
Application of type-2 fuzzy logic to a multi-objective green solid transportation-location problem with dwell time under carbon tax, cap and offset policy: Fuzzy vs. non-fuzzy techniques, IEEE Transactions on Fuzzy Systems, 28 (2020), 2711-2725.
doi: 10.1109/TFUZZ.2020.3011745. |
[8] |
S. K. Das, S. K. Roy and G.-W. Weber,
Heuristic approaches for solid transportation-$p$-facility location problem, CEJOR Cent. Eur. J. Oper. Res., 28 (2020), 939-961.
doi: 10.1007/s10100-019-00610-7. |
[9] |
J. Deng,
Control problems of grey systems, Systems and Control Letters, 1 (1982), 288-294.
doi: 10.1016/S0167-6911(82)80025-X. |
[10] |
J. Deng,
Introduction to grey theory system, J. Grey System, 1 (1989), 1-24.
|
[11] |
B. Dey, B. Bairagi, B. Sarkar and S. K. Sanyal,
Group heterogeneity in multi member decision making model with an application to warehouse location selection in a supply chain, Computers & Industrial Engineering, 105 (2017), 101-122.
doi: 10.1016/j.cie.2016.12.025. |
[12] |
I. Essaadi, B. Grabot and P. Féniès,
Location of global logistic hubs within Africa based on a fuzzy multi-criteria approach, Computers & Industrial Engineering, 132 (2019), 1-22.
doi: 10.1016/j.cie.2019.03.046. |
[13] |
Y.-P. Hu, X.-Y. You, L. Wang and H.-C. Liu,
An integrated approach for failure mode and effect analysis based on uncertain linguistic GRA-TOPSIS method, Soft Computing, 23 (2019), 8801-8814.
doi: 10.1007/s00500-018-3480-7. |
[14] |
Y. Jiang, J.-B. Sheu, Z. Peng and B. Yu,
Hinterland patterns of China Railway (CR) express in China under the Belt and road initiative: A preliminary analysis, Transportation Research Part E: Logistics and Transportation Review, 119 (2018), 189-201.
doi: 10.1016/j.tre.2018.10.002. |
[15] |
S. Khalilpourazari and A. Arshadi Khamseh,
Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: A comprehensive study with real world application, Ann. Oper. Res., 283 (2019), 355-393.
doi: 10.1007/s10479-017-2588-y. |
[16] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary,
Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037-3066.
doi: 10.1007/s00500-019-04080-6. |
[17] |
S. Khalilpourazari, S. Soltanzadeh, G.-W. Weber and S. K. Roy,
Designing an efficient blood supply chain network in crisis: Neural learning, optimization and case study, Ann. Oper. Res., 289 (2020), 123-152.
doi: 10.1007/s10479-019-03437-2. |
[18] |
B. Kirubakaran and M. Ilangkumaran,
Selection of optimum maintenance strategy based on FAHP integrated with GRA-TOPSIS, Ann. Oper. Res., 245 (2016), 285-313.
doi: 10.1007/s10479-014-1775-3. |
[19] |
X. Li, X. Li, X. Li and H. Qiu,
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos, Phys. A, 469 (2017), 405-419.
doi: 10.1016/j.physa.2016.11.022. |
[20] |
D. Li, L. Zhao, C. Wang, W. Sun and J. Xue,
Selection of China's imported grain distribution centers in the context of the belt and road initiative, Transportation Research Part E: Logistics and Transportation Review, 120 (2018), 16-34.
doi: 10.1016/j.tre.2018.10.007. |
[21] |
Y.-H. Lin, P.-C. Lee and T.-P. Chang,
Practical expert diagnosis model based on the grey relational analysis technique, Expert Systems with Applications, 36 (2009), 1523-1528.
doi: 10.1016/j.eswa.2007.11.046. |
[22] |
C.-C. Lin and S.-W. Lin,
Two-stage approach to the intermodal terminal location problem, Comput. Oper. Res., 67 (2016), 113-119.
doi: 10.1016/j.cor.2015.09.009. |
[23] |
D. Liu, C. Liu, Q. Fu, T. Li, K. M. Imran, S. Cui and F. M. Abrar,
ELM evaluation model of regional groundwater quality based on the crow search algorithm, Ecological Indicators, 81 (2017), 302-314.
doi: 10.1016/j.ecolind.2017.06.009. |
[24] |
D. Liu, X. Qi and Q. Fu,
A resilience evaluation method for a combined regional agricultural water and soil resource system based on Weighted Mahalanobis distance and a Gray-TOPSIS model, Journal of Cleaner Production, 229 (2019), 667-679.
doi: 10.1016/j.jclepro.2019.04.406. |
[25] |
S. Liu, N. Xie and J. Forrest,
Novel models of grey relational analysis based on visual angle of similarity and nearness, Grey Systems: Theory and Application, 1 (2011), 8-18.
doi: 10.1108/20439371111106696. |
[26] |
S. Long and S. E. Grasman,
A strategic decision model for evaluating inland freight hub locations, Research in Transportation Business & Management, 5 (2012), 92-98.
doi: 10.1016/j.rtbm.2012.11.004. |
[27] |
M. Lu, Node importance evaluation based on neighborhood structure hole and improved TOPSIS, Computer Networks, 178 (2020), 107336.
doi: 10.1016/j.comnet.2020.107336. |
[28] |
C. Ma, Y. Yang, J. Wang, Y. Chen and D. Yang,
Determining the location of a Swine farming facility based on grey correlation and the TOPSIS method, Transactions of the ASABE, 60 (2017), 1281-1289.
doi: 10.13031/trans.11968. |
[29] |
H. Mokhtar, A. A. N. P. Redi, M. Krishnamoorthy and A. T. Ernst,
An intermodal hub location problem for container distribution in indonesia, Comput. Oper. Res., 104 (2019), 415-432.
doi: 10.1016/j.cor.2018.08.012. |
[30] |
D. Muravev, H. Hu, H. Zhou and D. Pamucar, Location optimization of CR express international logistics centers, Symmetry, 12 (2020), 143.
doi: 10.3390/sym12010143. |
[31] |
M. E. O'Kelly, The location of interacting hub facilities, Transportation Science, 20 (1986), 92-106. Google Scholar |
[32] |
X. Pan, L. Ning and L. Shi, Visualisation and determinations of hub locations: Evidence from China's interregional trade network, Research in Transportation Economics, 75 (2019), 36-44. Google Scholar |
[33] |
P. Peng, Y. Yang, F. Lu, S. Cheng, N. Mou and R. Yang,
Modelling the competitiveness of the ports along the Maritime Silk Road with big data, Transportation Research Part A: Policy and Practice, 118 (2018), 852-867.
doi: 10.1016/j.tra.2018.10.041. |
[34] |
H. Quan, S. Li, H. Wei and J. Hu, Personalized product evaluation based on GRA-TOPSIS and Kansei engineering, Symmetry, 11 (2019), 867.
doi: 10.3390/sym11070867. |
[35] |
C. Rao, M. Goh, Y. Zhao and J. Zheng,
Location selection of city logistics centers under sustainability, Transportation Research Part D: Transport and Environment, 36 (2015), 29-44.
doi: 10.1016/j.trd.2015.02.008. |
[36] |
C. Salavati, A. Abdollahpouri and Z. Manbari,
Ranking nodes in complex networks based on local structure and improving closeness centrality, Neurocomputing, 336 (2019), 36-45.
doi: 10.1016/j.neucom.2018.04.086. |
[37] |
B. Sennaroglu and G. V. Celebi,
A military airport location selection by AHP integrated PROMETHEE and VIKOR methods, Transportation Research Part D: Transport and Environment, 59 (2018), 160-173.
doi: 10.1016/j.trd.2017.12.022. |
[38] |
J. B. Sheu and T. Kundu,
Forecasting time-varying logistics distribution flows in the One Belt-One Road strategic context, Transportation Research Part E: Logistics and Transportation Review, 117 (2018), 5-22.
doi: 10.1016/j.tre.2017.03.003. |
[39] |
W. Sun, L. Zhao, C. Wang, D. Li and J. Xue,
Selection of consolidation centres for China railway express, International Journal of Logistics Research and Applications, 23 (2020), 417-442.
doi: 10.1080/13675567.2019.1703917. |
[40] |
A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323. Google Scholar |
[41] |
Z. Y. Wang, A method of multi-object decision-making based on maximum deviations and entropy, Journal of PLA University of Science and Technology, 3 (2002), 93-95. Google Scholar |
[42] |
W. Wu and Y. Peng,
Extension of grey relational analysis for facilitating group consensus to oil spill emergency management, Ann. Oper. Res., 238 (2016), 615-635.
doi: 10.1007/s10479-015-2067-2. |
[43] |
X. Zhang, W. Zhang and P. T.-W. Lee, Importance rankings of nodes in the China railway express network under the belt and road initiative, Transportation Research Part A: Policy and Practice, 139 (2020), 134-147. Google Scholar |
[44] |
L. Zhao, H. Li, M. Li, Y. Sun, Q. Hu, S. Mao, J. Li and J. Xue,
Location selection of intra-city distribution hubs in the metro-integrated logistics system, Tunnelling and Underground Space Technology, 80 (2018), 246-256.
doi: 10.1016/j.tust.2018.06.024. |
[45] |
J. Zhou, Y. Wu, C. Wu, F. He, B. Zhang and F. Liu, A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing, Energy Conversion and Management, 205 (2020), 112340.
doi: 10.1016/j.enconman.2019.112340. |
show all references
References:
[1] |
R. P. Brooker and N. Qin,
Identification of potential locations of electric vehicle supply equipment, Journal of Power Sources, 299 (2015), 76-84.
doi: 10.1016/j.jpowsour.2015.08.097. |
[2] |
J. W. K. Chan and T. K. L. Tong,
Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach, Materials & Design, 28 (2007), 1539-1546.
doi: 10.1016/j.matdes.2006.02.016. |
[3] |
G. Chen, W. Cheung, S.-C. Chu and L. Xu,
Transshipment hub selection from a shipper's and freight forwarder's perspective, Expert Systems with Applications, 83 (2017), 396-404.
doi: 10.1016/j.eswa.2017.04.044. |
[4] |
M.-F. Chen and G.-H. Tzeng,
Combining grey relation and TOPSIS concepts for selecting an expatriate host country, Mathematical and Computer Modelling, 40 (2004), 1473-1490.
doi: 10.1016/j.mcm.2005.01.006. |
[5] |
S. K. Das, M. Pervin, S. K. Roy and G.-W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: A hybrid approach, Annals of Operations Research, (2021).
doi: 10.1007/s10479-020-03809-z. |
[6] |
S. K. Das and S. K. Roy, Effect of variable carbon emission in a multiobjective transportation-p-facility location problem under neutrosophic environment, Computers & Industrial Engineering, 132 (2019), 311-324. Google Scholar |
[7] |
S. K. Das, S. K. Roy and G.-W. Weber,
Application of type-2 fuzzy logic to a multi-objective green solid transportation-location problem with dwell time under carbon tax, cap and offset policy: Fuzzy vs. non-fuzzy techniques, IEEE Transactions on Fuzzy Systems, 28 (2020), 2711-2725.
doi: 10.1109/TFUZZ.2020.3011745. |
[8] |
S. K. Das, S. K. Roy and G.-W. Weber,
Heuristic approaches for solid transportation-$p$-facility location problem, CEJOR Cent. Eur. J. Oper. Res., 28 (2020), 939-961.
doi: 10.1007/s10100-019-00610-7. |
[9] |
J. Deng,
Control problems of grey systems, Systems and Control Letters, 1 (1982), 288-294.
doi: 10.1016/S0167-6911(82)80025-X. |
[10] |
J. Deng,
Introduction to grey theory system, J. Grey System, 1 (1989), 1-24.
|
[11] |
B. Dey, B. Bairagi, B. Sarkar and S. K. Sanyal,
Group heterogeneity in multi member decision making model with an application to warehouse location selection in a supply chain, Computers & Industrial Engineering, 105 (2017), 101-122.
doi: 10.1016/j.cie.2016.12.025. |
[12] |
I. Essaadi, B. Grabot and P. Féniès,
Location of global logistic hubs within Africa based on a fuzzy multi-criteria approach, Computers & Industrial Engineering, 132 (2019), 1-22.
doi: 10.1016/j.cie.2019.03.046. |
[13] |
Y.-P. Hu, X.-Y. You, L. Wang and H.-C. Liu,
An integrated approach for failure mode and effect analysis based on uncertain linguistic GRA-TOPSIS method, Soft Computing, 23 (2019), 8801-8814.
doi: 10.1007/s00500-018-3480-7. |
[14] |
Y. Jiang, J.-B. Sheu, Z. Peng and B. Yu,
Hinterland patterns of China Railway (CR) express in China under the Belt and road initiative: A preliminary analysis, Transportation Research Part E: Logistics and Transportation Review, 119 (2018), 189-201.
doi: 10.1016/j.tre.2018.10.002. |
[15] |
S. Khalilpourazari and A. Arshadi Khamseh,
Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: A comprehensive study with real world application, Ann. Oper. Res., 283 (2019), 355-393.
doi: 10.1007/s10479-017-2588-y. |
[16] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary,
Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037-3066.
doi: 10.1007/s00500-019-04080-6. |
[17] |
S. Khalilpourazari, S. Soltanzadeh, G.-W. Weber and S. K. Roy,
Designing an efficient blood supply chain network in crisis: Neural learning, optimization and case study, Ann. Oper. Res., 289 (2020), 123-152.
doi: 10.1007/s10479-019-03437-2. |
[18] |
B. Kirubakaran and M. Ilangkumaran,
Selection of optimum maintenance strategy based on FAHP integrated with GRA-TOPSIS, Ann. Oper. Res., 245 (2016), 285-313.
doi: 10.1007/s10479-014-1775-3. |
[19] |
X. Li, X. Li, X. Li and H. Qiu,
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos, Phys. A, 469 (2017), 405-419.
doi: 10.1016/j.physa.2016.11.022. |
[20] |
D. Li, L. Zhao, C. Wang, W. Sun and J. Xue,
Selection of China's imported grain distribution centers in the context of the belt and road initiative, Transportation Research Part E: Logistics and Transportation Review, 120 (2018), 16-34.
doi: 10.1016/j.tre.2018.10.007. |
[21] |
Y.-H. Lin, P.-C. Lee and T.-P. Chang,
Practical expert diagnosis model based on the grey relational analysis technique, Expert Systems with Applications, 36 (2009), 1523-1528.
doi: 10.1016/j.eswa.2007.11.046. |
[22] |
C.-C. Lin and S.-W. Lin,
Two-stage approach to the intermodal terminal location problem, Comput. Oper. Res., 67 (2016), 113-119.
doi: 10.1016/j.cor.2015.09.009. |
[23] |
D. Liu, C. Liu, Q. Fu, T. Li, K. M. Imran, S. Cui and F. M. Abrar,
ELM evaluation model of regional groundwater quality based on the crow search algorithm, Ecological Indicators, 81 (2017), 302-314.
doi: 10.1016/j.ecolind.2017.06.009. |
[24] |
D. Liu, X. Qi and Q. Fu,
A resilience evaluation method for a combined regional agricultural water and soil resource system based on Weighted Mahalanobis distance and a Gray-TOPSIS model, Journal of Cleaner Production, 229 (2019), 667-679.
doi: 10.1016/j.jclepro.2019.04.406. |
[25] |
S. Liu, N. Xie and J. Forrest,
Novel models of grey relational analysis based on visual angle of similarity and nearness, Grey Systems: Theory and Application, 1 (2011), 8-18.
doi: 10.1108/20439371111106696. |
[26] |
S. Long and S. E. Grasman,
A strategic decision model for evaluating inland freight hub locations, Research in Transportation Business & Management, 5 (2012), 92-98.
doi: 10.1016/j.rtbm.2012.11.004. |
[27] |
M. Lu, Node importance evaluation based on neighborhood structure hole and improved TOPSIS, Computer Networks, 178 (2020), 107336.
doi: 10.1016/j.comnet.2020.107336. |
[28] |
C. Ma, Y. Yang, J. Wang, Y. Chen and D. Yang,
Determining the location of a Swine farming facility based on grey correlation and the TOPSIS method, Transactions of the ASABE, 60 (2017), 1281-1289.
doi: 10.13031/trans.11968. |
[29] |
H. Mokhtar, A. A. N. P. Redi, M. Krishnamoorthy and A. T. Ernst,
An intermodal hub location problem for container distribution in indonesia, Comput. Oper. Res., 104 (2019), 415-432.
doi: 10.1016/j.cor.2018.08.012. |
[30] |
D. Muravev, H. Hu, H. Zhou and D. Pamucar, Location optimization of CR express international logistics centers, Symmetry, 12 (2020), 143.
doi: 10.3390/sym12010143. |
[31] |
M. E. O'Kelly, The location of interacting hub facilities, Transportation Science, 20 (1986), 92-106. Google Scholar |
[32] |
X. Pan, L. Ning and L. Shi, Visualisation and determinations of hub locations: Evidence from China's interregional trade network, Research in Transportation Economics, 75 (2019), 36-44. Google Scholar |
[33] |
P. Peng, Y. Yang, F. Lu, S. Cheng, N. Mou and R. Yang,
Modelling the competitiveness of the ports along the Maritime Silk Road with big data, Transportation Research Part A: Policy and Practice, 118 (2018), 852-867.
doi: 10.1016/j.tra.2018.10.041. |
[34] |
H. Quan, S. Li, H. Wei and J. Hu, Personalized product evaluation based on GRA-TOPSIS and Kansei engineering, Symmetry, 11 (2019), 867.
doi: 10.3390/sym11070867. |
[35] |
C. Rao, M. Goh, Y. Zhao and J. Zheng,
Location selection of city logistics centers under sustainability, Transportation Research Part D: Transport and Environment, 36 (2015), 29-44.
doi: 10.1016/j.trd.2015.02.008. |
[36] |
C. Salavati, A. Abdollahpouri and Z. Manbari,
Ranking nodes in complex networks based on local structure and improving closeness centrality, Neurocomputing, 336 (2019), 36-45.
doi: 10.1016/j.neucom.2018.04.086. |
[37] |
B. Sennaroglu and G. V. Celebi,
A military airport location selection by AHP integrated PROMETHEE and VIKOR methods, Transportation Research Part D: Transport and Environment, 59 (2018), 160-173.
doi: 10.1016/j.trd.2017.12.022. |
[38] |
J. B. Sheu and T. Kundu,
Forecasting time-varying logistics distribution flows in the One Belt-One Road strategic context, Transportation Research Part E: Logistics and Transportation Review, 117 (2018), 5-22.
doi: 10.1016/j.tre.2017.03.003. |
[39] |
W. Sun, L. Zhao, C. Wang, D. Li and J. Xue,
Selection of consolidation centres for China railway express, International Journal of Logistics Research and Applications, 23 (2020), 417-442.
doi: 10.1080/13675567.2019.1703917. |
[40] |
A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323. Google Scholar |
[41] |
Z. Y. Wang, A method of multi-object decision-making based on maximum deviations and entropy, Journal of PLA University of Science and Technology, 3 (2002), 93-95. Google Scholar |
[42] |
W. Wu and Y. Peng,
Extension of grey relational analysis for facilitating group consensus to oil spill emergency management, Ann. Oper. Res., 238 (2016), 615-635.
doi: 10.1007/s10479-015-2067-2. |
[43] |
X. Zhang, W. Zhang and P. T.-W. Lee, Importance rankings of nodes in the China railway express network under the belt and road initiative, Transportation Research Part A: Policy and Practice, 139 (2020), 134-147. Google Scholar |
[44] |
L. Zhao, H. Li, M. Li, Y. Sun, Q. Hu, S. Mao, J. Li and J. Xue,
Location selection of intra-city distribution hubs in the metro-integrated logistics system, Tunnelling and Underground Space Technology, 80 (2018), 246-256.
doi: 10.1016/j.tust.2018.06.024. |
[45] |
J. Zhou, Y. Wu, C. Wu, F. He, B. Zhang and F. Liu, A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing, Energy Conversion and Management, 205 (2020), 112340.
doi: 10.1016/j.enconman.2019.112340. |













Methods | Advantages | Limitations |
AHP | Flexible, concise, easy to calculate | Does not consider the interaction between indicators |
TOPSIS | Can measure the proximity between alternative and ideal solutions | Cannot distinguish vertical line nodes in positive and negative ideal solutions |
GRA | Can measure the similarity degree of curve shapes between sequences | Does not consider the closeness of the sequence and the directionality of the numerical value |
ELECTRE | Applicable when incomparable substitutes exist | Needs many parameters defined by decision-makers, and the calculation process is cumbersome |
PROMETHEE | Can avoid information loss by focusing on various properties of attributes | Fails to consider DMí »s risk aversion psychology |
VIKOR | Considers the maximum benefit of the group and minimum regret of the individual | The evaluation of uncertainty factors is unsatisfactory |
TODIM | Can reflect DMí»s evasion of losses and risk psychology | Regression coefficient is not clearly defined, and evaluation results vary with the DMs |
DEMATEL | Can avoid consistency errors due to too many comparison times | Cannot reflect the fuzziness of decision information and the subjectivity of DMs |
BWM | Can reduce the number of comparisons and provide comparisons with consistency, leading to reliable results | Needs to be scored by experts with certain subjectivity; DMsí» confidence in their comparisons is not considered |
Methods | Advantages | Limitations |
AHP | Flexible, concise, easy to calculate | Does not consider the interaction between indicators |
TOPSIS | Can measure the proximity between alternative and ideal solutions | Cannot distinguish vertical line nodes in positive and negative ideal solutions |
GRA | Can measure the similarity degree of curve shapes between sequences | Does not consider the closeness of the sequence and the directionality of the numerical value |
ELECTRE | Applicable when incomparable substitutes exist | Needs many parameters defined by decision-makers, and the calculation process is cumbersome |
PROMETHEE | Can avoid information loss by focusing on various properties of attributes | Fails to consider DMí »s risk aversion psychology |
VIKOR | Considers the maximum benefit of the group and minimum regret of the individual | The evaluation of uncertainty factors is unsatisfactory |
TODIM | Can reflect DMí»s evasion of losses and risk psychology | Regression coefficient is not clearly defined, and evaluation results vary with the DMs |
DEMATEL | Can avoid consistency errors due to too many comparison times | Cannot reflect the fuzziness of decision information and the subjectivity of DMs |
BWM | Can reduce the number of comparisons and provide comparisons with consistency, leading to reliable results | Needs to be scored by experts with certain subjectivity; DMsí» confidence in their comparisons is not considered |
Index | A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 |
Weight | 0.0888 | 0.1615 | 0.1163 | 0.0998 | 0.0554 | 0.03 | 0.1037 | 0.0237 | 0.1163 | 0.0349 | 0.0348 | 0.0701 | 0.0647 |
Index | A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 |
Weight | 0.0888 | 0.1615 | 0.1163 | 0.0998 | 0.0554 | 0.03 | 0.1037 | 0.0237 | 0.1163 | 0.0349 | 0.0348 | 0.0701 | 0.0647 |
Node | Ranking | |||||
Chongqing | 0.0681 | 1.0000 | 1.0000 | 0.8495 | 0.6855 | 1 |
Chengdu | 0.3259 | 0.7244 | 0.9498 | 0.8952 | 0.5783 | 5 |
Zhengzhou | 0.3362 | 0.5597 | 0.9166 | 0.9241 | 0.5395 | 9 |
Xi'an | 0.3269 | 0.6633 | 0.9347 | 0.9069 | 0.5643 | 6 |
Suzhou | 0.55 | 0.6076 | 0.9219 | 0.9297 | 0.5083 | 13 |
Wuhan | 0.1838 | 0.6908 | 0.9257 | 0.9024 | 0.5981 | 4 |
Changsha | 0.3888 | 0.4129 | 0.888 | 0.9572 | 0.4915 | 14 |
Hefei | 0.5098 | 0.4152 | 0.8817 | 0.9553 | 0.4696 | 18 |
Lanzhou | 0.3519 | 0.3349 | 0.8713 | 0.9851 | 0.4743 | 17 |
Shenyang | 1.0000 | 0.2845 | 0.858 | 1.0000 | 0.3636 | 22 |
Harbin | 0.6944 | 0.3196 | 0.8673 | 0.9899 | 0.4134 | 21 |
Nanjing | 0.2759 | 0.5634 | 0.9055 | 0.9244 | 0.5503 | 7 |
Hangzhou | 0.43 | 0.5315 | 0.9036 | 0.9367 | 0.5122 | 11 |
Nanning | 0.6054 | 0.3407 | 0.8685 | 0.9785 | 0.4329 | 20 |
Urumqi | 0.5853 | 0.3767 | 0.8791 | 0.993 | 0.4431 | 19 |
Shanghai | 0.2839 | 0.8857 | 0.9707 | 0.8955 | 0.6115 | 3 |
Ningbo | 0.3697 | 0.4831 | 0.8877 | 0.9444 | 0.5106 | 12 |
Guangzhou | 0.2633 | 0.883 | 0.9686 | 0.8883 | 0.6166 | 2 |
Tianjin | 0.3155 | 0.5932 | 0.9154 | 0.9222 | 0.5493 | 8 |
Qingdao | 0.4115 | 0.4219 | 0.8826 | 0.9526 | 0.4888 | 15 |
Dalian | 0.4104 | 0.545 | 0.896 | 0.9515 | 0.5141 | 10 |
Xiamen | 0.4029 | 0.3858 | 0.8699 | 0.9767 | 0.4765 | 16 |
Node | Ranking | |||||
Chongqing | 0.0681 | 1.0000 | 1.0000 | 0.8495 | 0.6855 | 1 |
Chengdu | 0.3259 | 0.7244 | 0.9498 | 0.8952 | 0.5783 | 5 |
Zhengzhou | 0.3362 | 0.5597 | 0.9166 | 0.9241 | 0.5395 | 9 |
Xi'an | 0.3269 | 0.6633 | 0.9347 | 0.9069 | 0.5643 | 6 |
Suzhou | 0.55 | 0.6076 | 0.9219 | 0.9297 | 0.5083 | 13 |
Wuhan | 0.1838 | 0.6908 | 0.9257 | 0.9024 | 0.5981 | 4 |
Changsha | 0.3888 | 0.4129 | 0.888 | 0.9572 | 0.4915 | 14 |
Hefei | 0.5098 | 0.4152 | 0.8817 | 0.9553 | 0.4696 | 18 |
Lanzhou | 0.3519 | 0.3349 | 0.8713 | 0.9851 | 0.4743 | 17 |
Shenyang | 1.0000 | 0.2845 | 0.858 | 1.0000 | 0.3636 | 22 |
Harbin | 0.6944 | 0.3196 | 0.8673 | 0.9899 | 0.4134 | 21 |
Nanjing | 0.2759 | 0.5634 | 0.9055 | 0.9244 | 0.5503 | 7 |
Hangzhou | 0.43 | 0.5315 | 0.9036 | 0.9367 | 0.5122 | 11 |
Nanning | 0.6054 | 0.3407 | 0.8685 | 0.9785 | 0.4329 | 20 |
Urumqi | 0.5853 | 0.3767 | 0.8791 | 0.993 | 0.4431 | 19 |
Shanghai | 0.2839 | 0.8857 | 0.9707 | 0.8955 | 0.6115 | 3 |
Ningbo | 0.3697 | 0.4831 | 0.8877 | 0.9444 | 0.5106 | 12 |
Guangzhou | 0.2633 | 0.883 | 0.9686 | 0.8883 | 0.6166 | 2 |
Tianjin | 0.3155 | 0.5932 | 0.9154 | 0.9222 | 0.5493 | 8 |
Qingdao | 0.4115 | 0.4219 | 0.8826 | 0.9526 | 0.4888 | 15 |
Dalian | 0.4104 | 0.545 | 0.896 | 0.9515 | 0.5141 | 10 |
Xiamen | 0.4029 | 0.3858 | 0.8699 | 0.9767 | 0.4765 | 16 |
L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | Ranking | |
1 | 0.6865 | 0.5813 | 0.5441 | 0.5677 | 0.6011 | 0.5544 | 0.6096 | 0.6152 | 0.5529 | 0.5143 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
1.5 | 0.6861 | 0.5801 | 0.5423 | 0.5664 | 0.5999 | 0.5529 | 0.6103 | 0.6157 | 0.5515 | 0.5141 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2 | 0.6857 | 0.5789 | 0.5405 | 0.565 | 0.5987 | 0.5512 | 0.6111 | 0.6162 | 0.5501 | 0.514 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2.25 | 0.6855 | 0.5783 | 0.5395 | 0.5643 | 0.5981 | 0.5503 | 0.6115 | 0.6166 | 0.5493 | 0.5141 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2.5 | 0.6853 | 0.5776 | 0.5384 | 0.5636 | 0.5975 | 0.5494 | 0.612 | 0.6169 | 0.5485 | 0.5142 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
3 | 0.6847 | 0.5761 | 0.5363 | 0.562 | 0.5961 | 0.5475 | 0.6132 | 0.6178 | 0.5469 | 0.5146 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
3.5 | 0.6842 | 0.5746 | 0.534 | 0.5603 | 0.5946 | 0.5455 | 0.6146 | 0.6189 | 0.5451 | 0.5154 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
4 | 0.6835 | 0.5729 | 0.5316 | 0.5584 | 0.593 | 0.5432 | 0.6163 | 0.6204 | 0.5432 | 0.5168 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | Ranking | |
1 | 0.6865 | 0.5813 | 0.5441 | 0.5677 | 0.6011 | 0.5544 | 0.6096 | 0.6152 | 0.5529 | 0.5143 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
1.5 | 0.6861 | 0.5801 | 0.5423 | 0.5664 | 0.5999 | 0.5529 | 0.6103 | 0.6157 | 0.5515 | 0.5141 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2 | 0.6857 | 0.5789 | 0.5405 | 0.565 | 0.5987 | 0.5512 | 0.6111 | 0.6162 | 0.5501 | 0.514 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2.25 | 0.6855 | 0.5783 | 0.5395 | 0.5643 | 0.5981 | 0.5503 | 0.6115 | 0.6166 | 0.5493 | 0.5141 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
2.5 | 0.6853 | 0.5776 | 0.5384 | 0.5636 | 0.5975 | 0.5494 | 0.612 | 0.6169 | 0.5485 | 0.5142 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
3 | 0.6847 | 0.5761 | 0.5363 | 0.562 | 0.5961 | 0.5475 | 0.6132 | 0.6178 | 0.5469 | 0.5146 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
3.5 | 0.6842 | 0.5746 | 0.534 | 0.5603 | 0.5946 | 0.5455 | 0.6146 | 0.6189 | 0.5451 | 0.5154 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
4 | 0.6835 | 0.5729 | 0.5316 | 0.5584 | 0.593 | 0.5432 | 0.6163 | 0.6204 | 0.5432 | 0.5168 | L0>L7>L6>L4>L1>L3>L5>L8>L2>L9 |
Cities | TOPSIS | TODIM | GRA-TOPSIS | eGRA-TOPSIS | ||||
Value | Ranking | Value | Ranking | Value | Ranking | Value | Ranking | |
Chongqing | 0.6877 | 1 | 0.5801 | 1 | 0.6278 | 1 | 0.6855 | 1 |
Chengdu | 0.5324 | 4 | 0.5102 | 6 | 0.5111 | 5 | 0.5783 | 5 |
Zhengzhou | 0.3927 | 10 | 0.4978 | 7 | 0.4512 | 10 | 0.5395 | 9 |
Xi'an | 0.4621 | 6 | 0.5154 | 5 | 0.4913 | 6 | 0.5643 | 6 |
Wuhan | 0.4906 | 5 | 0.5195 | 4 | 0.5147 | 4 | 0.5981 | 4 |
Nanjing | 0.415 | 8 | 0.4858 | 9 | 0.457 | 9 | 0.5503 | 7 |
Shanghai | 0.6169 | 3 | 0.5382 | 3 | 0.5875 | 3 | 0.6115 | 3 |
Guangzhou | 0.6415 | 2 | 0.5411 | 2 | 0.5967 | 2 | 0.6166 | 2 |
Tianjin | 0.4366 | 7 | 0.4959 | 8 | 0.4696 | 7 | 0.5493 | 8 |
Dalian | 0.4058 | 9 | 0.4676 | 10 | 0.466 | 8 | 0.5141 | 10 |
Cities | TOPSIS | TODIM | GRA-TOPSIS | eGRA-TOPSIS | ||||
Value | Ranking | Value | Ranking | Value | Ranking | Value | Ranking | |
Chongqing | 0.6877 | 1 | 0.5801 | 1 | 0.6278 | 1 | 0.6855 | 1 |
Chengdu | 0.5324 | 4 | 0.5102 | 6 | 0.5111 | 5 | 0.5783 | 5 |
Zhengzhou | 0.3927 | 10 | 0.4978 | 7 | 0.4512 | 10 | 0.5395 | 9 |
Xi'an | 0.4621 | 6 | 0.5154 | 5 | 0.4913 | 6 | 0.5643 | 6 |
Wuhan | 0.4906 | 5 | 0.5195 | 4 | 0.5147 | 4 | 0.5981 | 4 |
Nanjing | 0.415 | 8 | 0.4858 | 9 | 0.457 | 9 | 0.5503 | 7 |
Shanghai | 0.6169 | 3 | 0.5382 | 3 | 0.5875 | 3 | 0.6115 | 3 |
Guangzhou | 0.6415 | 2 | 0.5411 | 2 | 0.5967 | 2 | 0.6166 | 2 |
Tianjin | 0.4366 | 7 | 0.4959 | 8 | 0.4696 | 7 | 0.5493 | 8 |
Dalian | 0.4058 | 9 | 0.4676 | 10 | 0.466 | 8 | 0.5141 | 10 |
Method | TOPSIS | TODIM | GRA-TOPSIS | eGRA-TOPSIS |
Discrimination | 1.0422 | 1.0775 | 1.0922 | 1.0817 |
Method | TOPSIS | TODIM | GRA-TOPSIS | eGRA-TOPSIS |
Discrimination | 1.0422 | 1.0775 | 1.0922 | 1.0817 |
[1] |
Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial & Management Optimization, 2020, 16 (2) : 653-667. doi: 10.3934/jimo.2018172 |
[2] |
Anh Son Ta, Le Thi Hoai An, Djamel Khadraoui, Pham Dinh Tao. Solving Partitioning-Hub Location-Routing Problem using DCA. Journal of Industrial & Management Optimization, 2012, 8 (1) : 87-102. doi: 10.3934/jimo.2012.8.87 |
[3] |
Saeid Abbasi-Parizi, Majid Aminnayeri, Mahdi Bashiri. Robust solution for a minimax regret hub location problem in a fuzzy-stochastic environment. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1271-1295. doi: 10.3934/jimo.2018083 |
[4] |
Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577 |
[5] |
Christina Burt, Louis Caccetta, Leon Fouché, Palitha Welgama. An MILP approach to multi-location, multi-period equipment selection for surface mining with case studies. Journal of Industrial & Management Optimization, 2016, 12 (2) : 403-430. doi: 10.3934/jimo.2016.12.403 |
[6] |
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161 |
[7] |
Ying Hao, Fanwen Meng. A new method on gene selection for tissue classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 739-748. doi: 10.3934/jimo.2007.3.739 |
[8] |
Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028 |
[9] |
Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213 |
[10] |
Gilbert Strang. Three steps on an open road. Inverse Problems & Imaging, 2013, 7 (3) : 961-966. doi: 10.3934/ipi.2013.7.961 |
[11] |
Xiaohui Lyu, Nengmin Wang, Zhen Yang, Haoxun Chen. Shipper collaboration in forward and reverse logistics. Journal of Industrial & Management Optimization, 2020, 16 (2) : 669-705. doi: 10.3934/jimo.2018173 |
[12] |
Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189 |
[13] |
Naziya Parveen, Prakash N. Kamble. An extension of TOPSIS for group decision making in intuitionistic fuzzy environment. Mathematical Foundations of Computing, 2021, 4 (1) : 61-71. doi: 10.3934/mfc.2021002 |
[14] |
Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429 |
[15] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[16] |
Hayato Ushijima-Mwesigwa, MD Zadid Khan, Mashrur A. Chowdhury, Ilya Safro. Optimal Placement of wireless charging lanes in road networks. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1315-1341. doi: 10.3934/jimo.2020023 |
[17] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[18] |
Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363 |
[19] |
Tao Gu, Peiyu Ren, Maozhu Jin, Hua Wang. Tourism destination competitiveness evaluation in Sichuan province using TOPSIS model based on information entropy weights. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 771-782. doi: 10.3934/dcdss.2019051 |
[20] |
Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial & Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]