• Previous Article
    Inverse single facility location problem on a tree with balancing on the distance of server to clients
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme
doi: 10.3934/jimo.2021063

Design of path planning and tracking control of quadrotor

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

* Corresponding author: Rui Li (lirui@uestc.edu.cn)

Received  December 2020 Revised  January 2021 Early access  March 2021

Fund Project: This work is supported in part by the National Natural Science Foundation of China under grant (No. 61973055), the Fundamental Research Funds for the Central Universities (No. ZYGX2019J062) and a grant from the applied basic research programs of Sichuan province (No. 2019YJ0206)

In this paper, we first design a motion planning system based on the Batch Informed Trees (BIT*) algorithm for quadrotor and a linear model predictive control (LMPC) is applied to solve the path tracking problem for a quadrotor. BIT* algorithm is used to plan a barrier-free trajectory quickly in an obstructed environment. Then we apply linear model predictive control for the full state quadrotor system model to track the generated trajectory. Finally, the BIT* algorithm simulation case is presented using RVIZ visual interface and some simulation cases are presented using MATLAB / Simulink. The results demonstrate the capability and the effectiveness of the control strategy in fast path tracking and the quadrotor stability, while the desired performance is achieved.

Citation: Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021063
References:
[1]

Y. Bai, H. Liu, Z. Shi and Y. Zhong, Robust control of quadrotor unmanned air vehicles, in Proceedings of the 31st Chinese Control Conference, Hefei, (2012), 4462–4467. Google Scholar

[2]

J. Carsten, D. Ferguson and A. Stentz, 3Dfield d: Improved path planning and replanning in three dimensions, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2006), 3381–3386. Google Scholar

[3]

Y.-B. ChenG.-C. LuoY.-S. MeiJ.-Q. Yu and X.-L. Su, UAV path planning using artificial potential field method updated by optimal control theory, Internat. J. Systems Sci., 47 (2016), 1407-1420.  doi: 10.1080/00207721.2014.929191.  Google Scholar

[4]

F. ChenJ.-Q. YuX.-L. Su and G.-C. Luo, Path planning for multi-UAV formation, Journal of Intelligent and Robotic Systems, 77 (2015), 229-246.  doi: 10.1007/s10846-014-0077-y.  Google Scholar

[5]

N. R. Council, Autonomous Vehicles in Support of Naval Operations, The National Academies Press, Washington, DC, 2005, https://www.nap.edu/catalog/11379/autonomous-vehicles-in-support-of-naval-operations. Google Scholar

[6]

L. de FilippisG. Guglieri and F. Quagliotti, Path planning strategies for UAVs in 3D environments, Journal of Intelligent & Robotic Systems, 65 (2012), 247-264.   Google Scholar

[7]

T. Dierks and S. Jagannathan, Output feedback control of a quadrotor UAV using neural networks, IEEE Transactions on Neural Networks, 21 (2010), 50-66.   Google Scholar

[8]

E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959), 269-271.  doi: 10.1007/BF01386390.  Google Scholar

[9]

J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs, 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, (2015), 3067–3074. doi: 10.1109/ICRA.2015.7139620.  Google Scholar

[10]

S. R. HerwitzL. F. JohnsonS. E. DunaganR. G. HigginsD. V. SullivanJ. ZhengB. M. LobitzJ. G. LeungB. A. GallmeyerM. AoyagiR. E. Slye and J. A. Brass, Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support, Computers and Electronics in Agriculture, 44 (2004), 49-61.   Google Scholar

[11]

Y. Kwangjin and S. Sukkarieh, Real-time continuous curvature path planning of UAVs in cluttered environments, in 2008 5th International Symposium on Mechatronics and its Applications, IEEE, (2008), 1–6. Google Scholar

[12]

X. Q. Li, L. Qiu, S. Aziz, J. F. Pan, J. P. Yuan and B. Zhang, Control method of UAV based on RRT* for target tracking in cluttered environment, in 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), (2017), 1–4. Google Scholar

[13]

R. LiY. Shi and K.-L. Teo, Coordination arrival control for multi-agent systems, Internat. J. Robust Nonlinear Control, 26 (2016), 1456-1474.  doi: 10.1002/rnc.3359.  Google Scholar

[14]

Z. Ma, T. Hu, L. Shen, W. Kong, B. Zhao and K. Yao, An iterative learning controller for quadrotor UAV path following at a constant altitude, in 2015 34th Chinese Control Conference (CCC), Hangzhou, China, (2015), 4406–4411. Google Scholar

[15]

M. Nguyen Duc, T. N. Trong and Y. S. Xuan, The quadrotor MAV system using PID control, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, (2015), 506–510. Google Scholar

[16]

R. Sharma, M. Kothari, C. N. Taylor and I. Postlethwaite, Cooperative target-capturing with inaccurate target information, in Proceedings of the 2010 American Control Conference, Baltimore, MD, (2010), 5520–5525. Google Scholar

[17]

Z. Shulong, A. Honglei, Z. Daibing and S. Lincheng, A new feedback linearization LQR control for attitude of quadrotor, in 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), Singapore, (2014), 1593–1597. Google Scholar

[18]

M. Sumaila, Techniques for quadcopter modelling & design: A review, Journal of Unmanned System Technology. Google Scholar

[19]

J. Xiong and G. Zhang, Sliding mode control for a quadrotor UAV with parameter uncertainties, in 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, (2016), 207–212. Google Scholar

[20]

F. YanY.-S. Liu and J.-Z. Xiao, Path planning in complex 3D environments using a probabilistic roadmap method, International Journal of Automation and Computing, 10 (2013), 525-533.  doi: 10.1007/s11633-013-0750-9.  Google Scholar

[21]

B. ZhaoB. XianY. Zhang and X. Zhang, Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology, IEEE Transactions on Industrial Electronics, 62 (2015), 2891-2902.   Google Scholar

show all references

References:
[1]

Y. Bai, H. Liu, Z. Shi and Y. Zhong, Robust control of quadrotor unmanned air vehicles, in Proceedings of the 31st Chinese Control Conference, Hefei, (2012), 4462–4467. Google Scholar

[2]

J. Carsten, D. Ferguson and A. Stentz, 3Dfield d: Improved path planning and replanning in three dimensions, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2006), 3381–3386. Google Scholar

[3]

Y.-B. ChenG.-C. LuoY.-S. MeiJ.-Q. Yu and X.-L. Su, UAV path planning using artificial potential field method updated by optimal control theory, Internat. J. Systems Sci., 47 (2016), 1407-1420.  doi: 10.1080/00207721.2014.929191.  Google Scholar

[4]

F. ChenJ.-Q. YuX.-L. Su and G.-C. Luo, Path planning for multi-UAV formation, Journal of Intelligent and Robotic Systems, 77 (2015), 229-246.  doi: 10.1007/s10846-014-0077-y.  Google Scholar

[5]

N. R. Council, Autonomous Vehicles in Support of Naval Operations, The National Academies Press, Washington, DC, 2005, https://www.nap.edu/catalog/11379/autonomous-vehicles-in-support-of-naval-operations. Google Scholar

[6]

L. de FilippisG. Guglieri and F. Quagliotti, Path planning strategies for UAVs in 3D environments, Journal of Intelligent & Robotic Systems, 65 (2012), 247-264.   Google Scholar

[7]

T. Dierks and S. Jagannathan, Output feedback control of a quadrotor UAV using neural networks, IEEE Transactions on Neural Networks, 21 (2010), 50-66.   Google Scholar

[8]

E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959), 269-271.  doi: 10.1007/BF01386390.  Google Scholar

[9]

J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs, 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, (2015), 3067–3074. doi: 10.1109/ICRA.2015.7139620.  Google Scholar

[10]

S. R. HerwitzL. F. JohnsonS. E. DunaganR. G. HigginsD. V. SullivanJ. ZhengB. M. LobitzJ. G. LeungB. A. GallmeyerM. AoyagiR. E. Slye and J. A. Brass, Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support, Computers and Electronics in Agriculture, 44 (2004), 49-61.   Google Scholar

[11]

Y. Kwangjin and S. Sukkarieh, Real-time continuous curvature path planning of UAVs in cluttered environments, in 2008 5th International Symposium on Mechatronics and its Applications, IEEE, (2008), 1–6. Google Scholar

[12]

X. Q. Li, L. Qiu, S. Aziz, J. F. Pan, J. P. Yuan and B. Zhang, Control method of UAV based on RRT* for target tracking in cluttered environment, in 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), (2017), 1–4. Google Scholar

[13]

R. LiY. Shi and K.-L. Teo, Coordination arrival control for multi-agent systems, Internat. J. Robust Nonlinear Control, 26 (2016), 1456-1474.  doi: 10.1002/rnc.3359.  Google Scholar

[14]

Z. Ma, T. Hu, L. Shen, W. Kong, B. Zhao and K. Yao, An iterative learning controller for quadrotor UAV path following at a constant altitude, in 2015 34th Chinese Control Conference (CCC), Hangzhou, China, (2015), 4406–4411. Google Scholar

[15]

M. Nguyen Duc, T. N. Trong and Y. S. Xuan, The quadrotor MAV system using PID control, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, (2015), 506–510. Google Scholar

[16]

R. Sharma, M. Kothari, C. N. Taylor and I. Postlethwaite, Cooperative target-capturing with inaccurate target information, in Proceedings of the 2010 American Control Conference, Baltimore, MD, (2010), 5520–5525. Google Scholar

[17]

Z. Shulong, A. Honglei, Z. Daibing and S. Lincheng, A new feedback linearization LQR control for attitude of quadrotor, in 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), Singapore, (2014), 1593–1597. Google Scholar

[18]

M. Sumaila, Techniques for quadcopter modelling & design: A review, Journal of Unmanned System Technology. Google Scholar

[19]

J. Xiong and G. Zhang, Sliding mode control for a quadrotor UAV with parameter uncertainties, in 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, (2016), 207–212. Google Scholar

[20]

F. YanY.-S. Liu and J.-Z. Xiao, Path planning in complex 3D environments using a probabilistic roadmap method, International Journal of Automation and Computing, 10 (2013), 525-533.  doi: 10.1007/s11633-013-0750-9.  Google Scholar

[21]

B. ZhaoB. XianY. Zhang and X. Zhang, Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology, IEEE Transactions on Industrial Electronics, 62 (2015), 2891-2902.   Google Scholar

Figure 1.  The system structure diagram
Figure 2.  The earth-fixed inertial and body-fixed frames of a quadcopter
Figure 3.  Path planning module test result
Figure 4.  Reference trajectory
Figure 5.  Path tracking of the quadrotor
Figure 6.  Path tracking of $ x(t) $
Figure 7.  Path tracking of $ y(t) $
[1]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107

[2]

Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021009

[3]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[4]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[5]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[6]

Sheng-I Chen, Yen-Che Tseng. A partitioning column approach for solving LED sorter manipulator path planning problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021055

[7]

Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141

[8]

Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021119

[9]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[10]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336

[11]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[12]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[13]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[15]

Martin Burger, Alexander Lorz, Marie-Therese Wolfram. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth. Kinetic & Related Models, 2017, 10 (1) : 117-140. doi: 10.3934/krm.2017005

[16]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[17]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[18]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[19]

Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

[20]

Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (150)
  • HTML views (190)
  • Cited by (0)

Other articles
by authors

[Back to Top]