# American Institute of Mathematical Sciences

May  2022, 18(3): 2221-2235. doi: 10.3934/jimo.2021063

## Design of path planning and tracking control of quadrotor

 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

* Corresponding author: Rui Li (lirui@uestc.edu.cn)

Received  December 2020 Revised  January 2021 Published  May 2022 Early access  March 2021

Fund Project: This work is supported in part by the National Natural Science Foundation of China under grant (No. 61973055), the Fundamental Research Funds for the Central Universities (No. ZYGX2019J062) and a grant from the applied basic research programs of Sichuan province (No. 2019YJ0206)

In this paper, we first design a motion planning system based on the Batch Informed Trees (BIT*) algorithm for quadrotor and a linear model predictive control (LMPC) is applied to solve the path tracking problem for a quadrotor. BIT* algorithm is used to plan a barrier-free trajectory quickly in an obstructed environment. Then we apply linear model predictive control for the full state quadrotor system model to track the generated trajectory. Finally, the BIT* algorithm simulation case is presented using RVIZ visual interface and some simulation cases are presented using MATLAB / Simulink. The results demonstrate the capability and the effectiveness of the control strategy in fast path tracking and the quadrotor stability, while the desired performance is achieved.

Citation: Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2221-2235. doi: 10.3934/jimo.2021063
##### References:

show all references

##### References:
The system structure diagram
The earth-fixed inertial and body-fixed frames of a quadcopter
Path planning module test result
Reference trajectory
Path tracking of $x(t)$
Path tracking of $y(t)$
 [1] Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107 [2] Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1079-1100. doi: 10.3934/jimo.2021009 [3] Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437 [4] Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136 [5] Sheng-I Chen, Yen-Che Tseng. A partitioning column approach for solving LED sorter manipulator path planning problems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2033-2047. doi: 10.3934/jimo.2021055 [6] Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1935-1948. doi: 10.3934/jimo.2021050 [7] Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial and Management Optimization, 2022, 18 (5) : 3433-3443. doi: 10.3934/jimo.2021119 [8] Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 [9] Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336 [10] Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359 [11] Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks and Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143 [12] Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 [13] Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445 [14] Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 [15] Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 [16] João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks and Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303 [17] Martin Burger, Alexander Lorz, Marie-Therese Wolfram. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth. Kinetic and Related Models, 2017, 10 (1) : 117-140. doi: 10.3934/krm.2017005 [18] Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95 [19] Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845 [20] Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

2021 Impact Factor: 1.411

## Tools

Article outline

Figures and Tables