doi: 10.3934/jimo.2021066

Painlevé-Kuratowski convergences of the solution sets for vector optimization problems with free disposal sets

1. 

Faculty of Mathematical Economics, Banking University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

2. 

Department of Mathematics and Computing, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam

* Corresponding author: Nguyen Minh Tung

Dedicated to Professor Phan Quoc Khanh on the occasion of his 75th birthday

Received  April 2020 Revised  January 2021 Published  April 2021

This paper aims to present results on the Painlev$ \mathrm{\acute{e}} $-Kuratowski set-convergence of the sets of both infimal and minimal points of a sequence of perturbed vector optimization problems through free disposal sets. By assumptions of sequential compactness of the feasible sets or the uniform coerciveness of objective functions, this convergence is obtained both in the image and given spaces under the perturbations of objective functions and feasible sets. Besides, we also establish set-convergences of sequences of approximation solution sets. Applications to the stability of conic, quadratic and linear vector optimization problems are given. Some examples are provided to illustrate our results.

Citation: Nguyen Minh Tung, Mai Van Duy. Painlevé-Kuratowski convergences of the solution sets for vector optimization problems with free disposal sets. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021066
References:
[1]

H. Attouch and H. Riahi, Stability results for Ekeland's -variational principle and cone extremal solutions, Math. Oper. Res., 18 (1993), 173-201.  doi: 10.1287/moor.18.1.173.  Google Scholar

[2]

K. J. Arrow, An extension of the basic theorems of classical welfare economics, in Proceedings of the Second Berkeley Symposium, University of California Press, Berkeley, CA, 1951,507-532.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.  Google Scholar

[4]

A. O. CarusoA. A. Khan and F. Raciti, Continuity results for a class of variational inequalities with applications to time-dependent network problems, Numer. Funct. Anal. Optim., 30 (2009), 1272-1288.  doi: 10.1080/01630560903381696.  Google Scholar

[5]

J. M. Bonnisseau and B. Cornet, Existence of marginal cost pricing equilibria in an economy with several nonconvex firms, Econometrica., 58 (1990), 661-682.  doi: 10.2307/2938195.  Google Scholar

[6]

J. M. Bonnisseau and B. Cornet, On the characterization of efficient production vectors, Econom. Theory., 31 (2007), 213-223.  doi: 10.1007/s00199-006-0096-4.  Google Scholar

[7]

N. DinhM. A. GobernaD. H. Long and M. A. López-Cerdá, New Farkas-type results for vector-valued functions: A non-abstract approach, J. Optim. Theory Appl., 182 (2019), 4-29.  doi: 10.1007/s10957-018-1352-z.  Google Scholar

[8]

M. Ehrgott, Multicriteria Optimization, Springer, Berlin Heidelberg, 2005.  Google Scholar

[9]

S. D. Flam and A. Jourani, Prices and Pareto Optima, Optimization, 55 (2006), 611-625.  doi: 10.1080/02331930600808434.  Google Scholar

[10]

M. FlorenzanoP. Gourdel and A. Jofre, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies, Econom. Theory., 29 (2006), 549-564.  doi: 10.1007/s00199-005-0033-y.  Google Scholar

[11]

R. Guesnerie, Pareto optimality in nonconvex economies, Econometrica., 43 (1975), 1-29.  doi: 10.2307/1913410.  Google Scholar

[12]

X. X. Huang, Stability in vector-valued and set-valued optimization, Math. Methods Oper. Res., 52 (2000), 185-193.  doi: 10.1007/s001860000085.  Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies, in Constructive, Experimental, and Nonlinear Analysis, CMS Conference Proceedings, 27, AMS, Providence, RI, 2000,175–184.  Google Scholar

[14]

A. Jofré and J. Rivera, An intrinsic characterization of free disposal hypothesis, Econom. Lett., 92 (2006), 423-427.  doi: 10.1016/j.econlet.2006.03.025.  Google Scholar

[15]

M. A. Khan and R. Vohra, An extension of the second welfare theorem to economies with nonconvexities and public goods, Quart. J. Econom., 102 (1987), 223-241.  doi: 10.2307/1885061.  Google Scholar

[16]

A. A. Khan, C. Tammer and C. Z$\mathrm{\breve{a}}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, Berlin, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[17]

S. Kapoor and C. S. Lalitha, Stability and scalarization for a unified vector optimization problem, J. Optim. Theory Appl., 182 (2019), 1050-1067.  doi: 10.1007/s10957-019-01514-x.  Google Scholar

[18]

C. S. Lalitha and P. Chatterjee, Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities, J. Optim. Theory Appl., 155 (2012), 941-961.  doi: 10.1007/s10957-012-0106-6.  Google Scholar

[19]

C. S. Lalitha and P. Chatterjee, Stability for properly quasiconvex vector optimization problem, J.Optim. Theory Appl., 155 (2012), 492-506.  doi: 10.1007/s10957-012-0079-5.  Google Scholar

[20]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[21]

X. B. LiQ. L. Wang and Z. Lin, Stability results for properly quasiconvex vector optimization problems, Optimization, 64 (2015), 1329-1347.  doi: 10.1080/02331934.2013.860529.  Google Scholar

[22]

X. B. LiZ. Lin and Z. Y. Peng, Convergence for vector optimization problems with variable ordering structure, Optimization, 65 (2016), 1615-1627.  doi: 10.1080/02331934.2016.1157879.  Google Scholar

[23]

D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, 319, Springer, Berlin, 1989.  Google Scholar

[24]

D. T. LucR. Lucchetti and C. Maliverti, Convergence of the efficient sets, Set-Valued Anal., 2 (1994), 207-218.  doi: 10.1007/BF01027102.  Google Scholar

[25]

R. E. Lucchetti and E. Miglierina, Stability for convex vector optimization problems, Optimization, 53 (2004), 517-528.  doi: 10.1080/02331930412331327166.  Google Scholar

[26]

A. Mas-Colell, The price equilibrium existence problem in topological vector lattices, Econometrica., 54 (1986), 1039-1055.  doi: 10.2307/1912321.  Google Scholar

[27]

E. Miglierina and E. Molho, Scalarization and stability in vector optimization, J. Optim. Theory Appl., 114 (2002), 657-670.  doi: 10.1023/A:1016031214488.  Google Scholar

[28]

B. S. Mordukhovich, Abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl., 161 (2000), 187-212.  doi: 10.1006/jmaa.2000.7041.  Google Scholar

[29]

H. Nakayama, Y. Sawaragi and T. Tanino, Theory of Multiobjective Optimization, Mathematics in science and engineering, 176, Academic Press Inc., London, 1985.  Google Scholar

[30]

P. Oppezzi and A. M. Rossi, A convergence for vector valued functions, Optimization, 57 (2008), 435-448.  doi: 10.1080/02331930601129624.  Google Scholar

[31]

P. Oppezzi and A. M. Rossi, A convergence for infinite dimensional vector valued functions, J. Glob. Optim., 42 (2008), 577-586.  doi: 10.1007/s10898-008-9284-z.  Google Scholar

[32]

Z. Y. PengJ. M. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, J. Global Optim., 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[33]

Z. Y. PengZ. Y. Wang and X. M. Yang, Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets, J. Optim. Theory Appl., 185 (2020), 188-206.  doi: 10.1007/s10957-020-01633-w.  Google Scholar

[34]

Z. Y. PengX. F. Wang and X. M. Yang, Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems, Set-Valued Var. Anal., 27 (2019), 103-118.  doi: 10.1007/s11228-017-0423-x.  Google Scholar

[35]

G. Salinetti and R. J. B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev., 21 (1979), 18-33.  doi: 10.1137/1021002.  Google Scholar

[36]

T. Tanaka, Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions, J. Optim. Theory Appl., 81 (1994), 355-377.  doi: 10.1007/BF02191669.  Google Scholar

[37]

H. Tuy, Minimax theorems revisited, Acta Math. Vietnam., 29 (2004), 217-229.   Google Scholar

[38]

N. V. Tuyen, Convergence of the relative Pareto efficient sets, Taiwanese J. Math., 20 (2016), 1149-1173.  doi: 10.11650/tjm.20.2016.6229.  Google Scholar

[39]

J. J. WangZ. Y. PengZ. Lin and D. Q. Zhou, On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set, J. Ind. Manag. Optim., 17 (2021), 869-887.  doi: 10.3934/jimo.2020002.  Google Scholar

show all references

References:
[1]

H. Attouch and H. Riahi, Stability results for Ekeland's -variational principle and cone extremal solutions, Math. Oper. Res., 18 (1993), 173-201.  doi: 10.1287/moor.18.1.173.  Google Scholar

[2]

K. J. Arrow, An extension of the basic theorems of classical welfare economics, in Proceedings of the Second Berkeley Symposium, University of California Press, Berkeley, CA, 1951,507-532.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.  Google Scholar

[4]

A. O. CarusoA. A. Khan and F. Raciti, Continuity results for a class of variational inequalities with applications to time-dependent network problems, Numer. Funct. Anal. Optim., 30 (2009), 1272-1288.  doi: 10.1080/01630560903381696.  Google Scholar

[5]

J. M. Bonnisseau and B. Cornet, Existence of marginal cost pricing equilibria in an economy with several nonconvex firms, Econometrica., 58 (1990), 661-682.  doi: 10.2307/2938195.  Google Scholar

[6]

J. M. Bonnisseau and B. Cornet, On the characterization of efficient production vectors, Econom. Theory., 31 (2007), 213-223.  doi: 10.1007/s00199-006-0096-4.  Google Scholar

[7]

N. DinhM. A. GobernaD. H. Long and M. A. López-Cerdá, New Farkas-type results for vector-valued functions: A non-abstract approach, J. Optim. Theory Appl., 182 (2019), 4-29.  doi: 10.1007/s10957-018-1352-z.  Google Scholar

[8]

M. Ehrgott, Multicriteria Optimization, Springer, Berlin Heidelberg, 2005.  Google Scholar

[9]

S. D. Flam and A. Jourani, Prices and Pareto Optima, Optimization, 55 (2006), 611-625.  doi: 10.1080/02331930600808434.  Google Scholar

[10]

M. FlorenzanoP. Gourdel and A. Jofre, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies, Econom. Theory., 29 (2006), 549-564.  doi: 10.1007/s00199-005-0033-y.  Google Scholar

[11]

R. Guesnerie, Pareto optimality in nonconvex economies, Econometrica., 43 (1975), 1-29.  doi: 10.2307/1913410.  Google Scholar

[12]

X. X. Huang, Stability in vector-valued and set-valued optimization, Math. Methods Oper. Res., 52 (2000), 185-193.  doi: 10.1007/s001860000085.  Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies, in Constructive, Experimental, and Nonlinear Analysis, CMS Conference Proceedings, 27, AMS, Providence, RI, 2000,175–184.  Google Scholar

[14]

A. Jofré and J. Rivera, An intrinsic characterization of free disposal hypothesis, Econom. Lett., 92 (2006), 423-427.  doi: 10.1016/j.econlet.2006.03.025.  Google Scholar

[15]

M. A. Khan and R. Vohra, An extension of the second welfare theorem to economies with nonconvexities and public goods, Quart. J. Econom., 102 (1987), 223-241.  doi: 10.2307/1885061.  Google Scholar

[16]

A. A. Khan, C. Tammer and C. Z$\mathrm{\breve{a}}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, Berlin, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[17]

S. Kapoor and C. S. Lalitha, Stability and scalarization for a unified vector optimization problem, J. Optim. Theory Appl., 182 (2019), 1050-1067.  doi: 10.1007/s10957-019-01514-x.  Google Scholar

[18]

C. S. Lalitha and P. Chatterjee, Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities, J. Optim. Theory Appl., 155 (2012), 941-961.  doi: 10.1007/s10957-012-0106-6.  Google Scholar

[19]

C. S. Lalitha and P. Chatterjee, Stability for properly quasiconvex vector optimization problem, J.Optim. Theory Appl., 155 (2012), 492-506.  doi: 10.1007/s10957-012-0079-5.  Google Scholar

[20]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[21]

X. B. LiQ. L. Wang and Z. Lin, Stability results for properly quasiconvex vector optimization problems, Optimization, 64 (2015), 1329-1347.  doi: 10.1080/02331934.2013.860529.  Google Scholar

[22]

X. B. LiZ. Lin and Z. Y. Peng, Convergence for vector optimization problems with variable ordering structure, Optimization, 65 (2016), 1615-1627.  doi: 10.1080/02331934.2016.1157879.  Google Scholar

[23]

D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, 319, Springer, Berlin, 1989.  Google Scholar

[24]

D. T. LucR. Lucchetti and C. Maliverti, Convergence of the efficient sets, Set-Valued Anal., 2 (1994), 207-218.  doi: 10.1007/BF01027102.  Google Scholar

[25]

R. E. Lucchetti and E. Miglierina, Stability for convex vector optimization problems, Optimization, 53 (2004), 517-528.  doi: 10.1080/02331930412331327166.  Google Scholar

[26]

A. Mas-Colell, The price equilibrium existence problem in topological vector lattices, Econometrica., 54 (1986), 1039-1055.  doi: 10.2307/1912321.  Google Scholar

[27]

E. Miglierina and E. Molho, Scalarization and stability in vector optimization, J. Optim. Theory Appl., 114 (2002), 657-670.  doi: 10.1023/A:1016031214488.  Google Scholar

[28]

B. S. Mordukhovich, Abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl., 161 (2000), 187-212.  doi: 10.1006/jmaa.2000.7041.  Google Scholar

[29]

H. Nakayama, Y. Sawaragi and T. Tanino, Theory of Multiobjective Optimization, Mathematics in science and engineering, 176, Academic Press Inc., London, 1985.  Google Scholar

[30]

P. Oppezzi and A. M. Rossi, A convergence for vector valued functions, Optimization, 57 (2008), 435-448.  doi: 10.1080/02331930601129624.  Google Scholar

[31]

P. Oppezzi and A. M. Rossi, A convergence for infinite dimensional vector valued functions, J. Glob. Optim., 42 (2008), 577-586.  doi: 10.1007/s10898-008-9284-z.  Google Scholar

[32]

Z. Y. PengJ. M. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, J. Global Optim., 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[33]

Z. Y. PengZ. Y. Wang and X. M. Yang, Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets, J. Optim. Theory Appl., 185 (2020), 188-206.  doi: 10.1007/s10957-020-01633-w.  Google Scholar

[34]

Z. Y. PengX. F. Wang and X. M. Yang, Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems, Set-Valued Var. Anal., 27 (2019), 103-118.  doi: 10.1007/s11228-017-0423-x.  Google Scholar

[35]

G. Salinetti and R. J. B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev., 21 (1979), 18-33.  doi: 10.1137/1021002.  Google Scholar

[36]

T. Tanaka, Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions, J. Optim. Theory Appl., 81 (1994), 355-377.  doi: 10.1007/BF02191669.  Google Scholar

[37]

H. Tuy, Minimax theorems revisited, Acta Math. Vietnam., 29 (2004), 217-229.   Google Scholar

[38]

N. V. Tuyen, Convergence of the relative Pareto efficient sets, Taiwanese J. Math., 20 (2016), 1149-1173.  doi: 10.11650/tjm.20.2016.6229.  Google Scholar

[39]

J. J. WangZ. Y. PengZ. Lin and D. Q. Zhou, On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set, J. Ind. Manag. Optim., 17 (2021), 869-887.  doi: 10.3934/jimo.2020002.  Google Scholar

Figure 1.  The free disposal set $ E $ and some infimal sets
Figure 2.  The free disposal set $ E $ and $ E $-infimal sets in Example 6
Figure 3.  The free disposal set $ E $ and $ E $-infimal sets in Example 7
[1]

Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791

[2]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[3]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[4]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[5]

Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020342

[6]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[7]

Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569

[8]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[9]

M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure & Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495

[10]

Michael Scheutzow. Minimal forward random point attractors need not exist. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5597-5600. doi: 10.3934/dcdsb.2019073

[11]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[12]

Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020092

[13]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[14]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[15]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[16]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[17]

Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477

[18]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[19]

María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153

[20]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (35)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]