This paper studies the hedging problem of unit-linked life insurance contracts in an incomplete market presence of self-exciting (clustering) effect, which is described by a Hawkes process. Applying the local risk-minimization method, we manage to obtain closed-form expressions of the locally risk-minimizing hedging strategies for both pure endowment and term insurance contracts. Besides, we demonstrate the existence of the minimal martingale measure and perform numerical analyses. Our numerical results indicate that jump clustering has a significant impact on the optimal hedging strategies.
Citation: |
Figure 3. Effects of the jump size $ Z $ on $ \xi_{0}^{PE\ast} $ and $ \Delta_{0} $. We assume the jump size $ Z_j\in U(-0.1, 0.1) $ and $ Z_j\in U(-0.5, 0.5) $ in the left panel and the right panel of Figure 3, respectively
[1] |
Y. Aït-Sahalia, J. Cacho-Diaz and R. J. A. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.
doi: 10.1016/j.jfineco.2015.03.002.![]() ![]() |
[2] |
Y. Aït-Sahalia and T. R. Hurd, Portfolio choice in markets with contagion, Journal of Financial Economics, 14 (2016), 1-28.
doi: 10.1093/jjfinec/nbv024.![]() ![]() |
[3] |
T. Arai, Y. Imai and R. Suzuki, Numerical analysis on local risk-minimization for exponential L$\acute{e}$vy models, International Journal of Theoretical and Applied Finance, 19 (2016), 1650008, 27 pp.
doi: 10.1142/S0219024916500084.![]() ![]() ![]() |
[4] |
T. Arai, Y. Imai and R. Suzuki, Local risk-minimization for Barndorff-Nielsen and Shephard models, Finance and Stochastic, 21 (2017), 551-592.
doi: 10.1007/s00780-017-0324-8.![]() ![]() ![]() |
[5] |
C. G. Bowsher, Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, 141 (2007), 876-912.
doi: 10.1016/j.jeconom.2006.11.007.![]() ![]() ![]() |
[6] |
C. Ceci, K. Colaneri and A. Cretarola, Hedging of unit-linked life insurance contracts with unobservable mortality hazard rate via local risk-minimization, Insurance: Mathematics and Economics, 60 (2015), 47-60.
doi: 10.1016/j.insmatheco.2014.10.013.![]() ![]() ![]() |
[7] |
C. Ceci, K. Colaneri and A. Cretarola, Unit-linked life insurance policies: Optimal hedging in partially observable market models, Insurance: Mathematics and Economics, 76 (2017), 149-163.
doi: 10.1016/j.insmatheco.2017.07.005.![]() ![]() ![]() |
[8] |
T. Chan, Pricing contingent claims on stocks driven by L$\acute{e}$vy processes, The Annals of Applied Probability, 9 (1999), 504-528.
doi: 10.1214/aoap/1029962753.![]() ![]() ![]() |
[9] |
T. Choulli, L. Krawczyk and C. Stricker, $\mathscr{E}$-martingales and their applications in mathematical finance, The Annals of Applied Probability, 26 (1998), 853-876.
doi: 10.1214/aop/1022855653.![]() ![]() ![]() |
[10] |
T. Choulli, N. Vandaele and M. Vanmaele, The F$\ddot{o}$llmer-Schweizer decomposition: comparison and description, Stochastic Processes and their Applications, 120 (2010), 853-872.
doi: 10.1016/j.spa.2010.02.004.![]() ![]() ![]() |
[11] |
S. N. Cohen and R. J. Elliott, Stochastic Calculus and Applications, Probability and its Applications. Springer, Cham, 2015.
doi: 10.1007/978-1-4939-2867-5.![]() ![]() ![]() |
[12] |
N. Dacev, The necessity of legal arrangement of unit-linked life insurance products, UTMS Journal of Economics, 8 (2017), 259-269.
![]() |
[13] |
A. Dassios and H. Zhao, Exact simulation of Hawkes process with exponentially decaying intensity, Electronic Communications in Probability, 18 (2013), 1-13.
doi: 10.1214/ECP.v18-2717.![]() ![]() ![]() |
[14] |
E. Errais, K. Giesecke and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM Journal on Financial Mathematics, 1 (2010), 642-665.
doi: 10.1137/090771272.![]() ![]() ![]() |
[15] |
H. F$\ddot{o}$llmer and D. Sondermann, Hedging of non-redundant contingent claims, Contributions to Mathematical Economics. In honor of G. Debreu (Eds. W. Hildenbrand and A. Mas-Colell), Elsevier Science Publ., North-Holland, (1986), 205–223.
![]() ![]() |
[16] |
D. Hainaut, A bivariate Hawkes process for interest rate modeling, Economic Modelling, 57 (2016), 180-196.
doi: 10.1016/j.econmod.2016.04.016.![]() ![]() |
[17] |
D. Hainaut and F. Moraux, Hedging of options in presence of jump clustering, Journal of Computational Finance, 28 (2018), 1-35.
doi: 10.21314/JCF.2018.354.![]() ![]() |
[18] |
A. G. Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B, 33 (1971), 438-443.
doi: 10.1111/j.2517-6161.1971.tb01530.x.![]() ![]() ![]() |
[19] |
A. G. Hawkes, Spectra of some self exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.
doi: 10.1093/biomet/58.1.83.![]() ![]() ![]() |
[20] |
A. G. Hawkes, Hawkes processes and their applications to finance: A review, Quantitative Finance, 17 (2018), 193-198.
doi: 10.1080/14697688.2017.1403131.![]() ![]() ![]() |
[21] |
L. F. B. Henriksen and T. Møller, Local risk-minimization with longevity bonds, Applied Stochastic Models in Business and Industry, 31 (2015), 241-263.
doi: 10.1002/asmb.2028.![]() ![]() ![]() |
[22] |
T. Kokholm, Pricing and hedging of derivatives in contagious markets, Journal of Banking and Finance, 66 (2016), 19-34.
doi: 10.1016/j.jbankfin.2016.01.012.![]() ![]() |
[23] |
K. Lee and S. Song, Insiders' hedging in a jump diffusion model, Quantitative Finance, 7 (2007), 537-545.
doi: 10.1080/14697680601043191.![]() ![]() ![]() |
[24] |
K. Lee and P. Protter, Hedging claims with feedback jumps in the price process, Communications on Stochastic Analysis, 2 (2008), 125-143.
doi: 10.31390/cosa.2.1.09.![]() ![]() ![]() |
[25] |
J. Li and A. Szimayer, The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts, Insurance: Mathematics and Economics, 49 (2011), 471-486.
doi: 10.1016/j.insmatheco.2011.08.001.![]() ![]() ![]() |
[26] |
Y. Ma, K. Shrestha and W. Xu, Pricing vulnerable options with jump clustering, The Journal of Futures Markets, 37 (2017), 1155-1178.
doi: 10.1002/fut.21843.![]() ![]() |
[27] |
T. Møller, Risk minimizing hedging strategies for unit-linked life insurance contracts, Astin Bulletin, 28 (1998), 17-47.
doi: 10.2143/AST.28.1.519077.![]() ![]() |
[28] |
O. Nteukam T., F. Planchet and P.-E. Thérond, Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee, Insurance: Mathematics and Economics, 48 (2011), 161-175.
doi: 10.1016/j.insmatheco.2010.10.011.![]() ![]() ![]() |
[29] |
J. Pansera, Discrete-time local risk-minimization of payment processes and applications to equity-linked life-insurance contracts, Insurance: Mathematics and Economics, 50 (2012), 1-11.
doi: 10.1016/j.insmatheco.2011.10.001.![]() ![]() ![]() |
[30] |
S.-H. Park and K. Lee, Insiders' hedging in a stochastic volatility model, IMA Journal of Management and Mathematics, 27 (2016), 281-2951.
doi: 10.1093/imaman/dpu023.![]() ![]() ![]() |
[31] |
E. Platen and N. Bruti-Liberati, Numerical solution of stochastic differential equations with jumps in finance, Springer, Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-13694-8.![]() ![]() ![]() |
[32] |
M. Riesner, Hedging life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 38 (2006), 599-608.
doi: 10.1016/j.insmatheco.2005.12.004.![]() ![]() ![]() |
[33] |
M. Schweizer, Hedging of Options in a General Semimartingale Model, Ph.D thesis, Zurich University, Switzerland, 1988.
![]() |
[34] |
M. Schweizer, A guided tour through quadratic hedging approaches, in Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk Management, Cambridge University Press, Cambridge, (2001), 538–574.
doi: 10.1017/CBO9780511569708.016.![]() ![]() ![]() |
[35] |
Y. Shen and B. Zou, Mean-variance portfolio selection in contagious markets, preprint.
doi: 10.13140/RG.2.2.36243.02088.![]() ![]() |
[36] |
G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodology and Computing in Applied Probability, 12 (2010), 415-429.
doi: 10.1007/s11009-008-9110-6.![]() ![]() ![]() |
[37] |
N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 42 (2008), 1128-1137.
doi: 10.1016/j.insmatheco.2008.03.001.![]() ![]() ![]() |
[38] |
X. Zhang, J. Xiong and Y. Shen, Bond and option pricing for interest rate model with clustering effects, Quantitative Finance, 18 (2018), 969-981.
doi: 10.1080/14697688.2017.1388534.![]() ![]() ![]() |
[39] |
L. Zhu, Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps, Journal of Applied Probability, 51 (2014), 699-712.
doi: 10.1239/jap/1409932668.![]() ![]() ![]() |
Paths of intensity process
Number of stock
Effects of the jump size
Effects of the intensity