• Previous Article
    Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems
  • JIMO Home
  • This Issue
  • Next Article
    Preannouncement strategy of platform-type new product for competing platforms: Technical or marketing information
doi: 10.3934/jimo.2021072

Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering

1. 

School of Mathematics and Statistics, Ningbo University, 818 Fenghua Road, Ningbo 315211, China

2. 

School of Risk and Actuarial Studies and CEPAR, University of New South Wales, Sydney, NSW 2052, Australia

3. 

Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200241, China

4. 

Department of Mathematical Sciences, Ball State University, Muncie 47304, USA

* Corresponding author: Linyi Qian

Received  July 2020 Revised  February 2021 Published  April 2021

Fund Project: This work was supported by the Humanity and Social Science Youth Foundation of the Ministry of Education of China (18YJC910012), the National Natural Science Foundation of China (11771147, 12071147), "Shuguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(18SG25), the State Key Program of National Natural Science Foundation of China (71931004), the Discovery Early Career Researcher Award (DE200101266) of the Australian Research Council, the Zhejiang Provincial Natural Science Foundation of China (LY17G010003), the 111 Project(B14019), Ningbo City Natural Science Foundation (202003N4144) and the Humanity and Social Science Foundation of Ningbo University (XPYB19002)

This paper studies the hedging problem of unit-linked life insurance contracts in an incomplete market presence of self-exciting (clustering) effect, which is described by a Hawkes process. Applying the local risk-minimization method, we manage to obtain closed-form expressions of the locally risk-minimizing hedging strategies for both pure endowment and term insurance contracts. Besides, we demonstrate the existence of the minimal martingale measure and perform numerical analyses. Our numerical results indicate that jump clustering has a significant impact on the optimal hedging strategies.

Citation: Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021072
References:
[1]

Y. Aït-SahaliaJ. Cacho-Diaz and R. J. A. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.  doi: 10.1016/j.jfineco.2015.03.002.  Google Scholar

[2]

Y. Aït-Sahalia and T. R. Hurd, Portfolio choice in markets with contagion, Journal of Financial Economics, 14 (2016), 1-28.  doi: 10.1093/jjfinec/nbv024.  Google Scholar

[3]

T. Arai, Y. Imai and R. Suzuki, Numerical analysis on local risk-minimization for exponential L$\acute{e}$vy models, International Journal of Theoretical and Applied Finance, 19 (2016), 1650008, 27 pp. doi: 10.1142/S0219024916500084.  Google Scholar

[4]

T. AraiY. Imai and R. Suzuki, Local risk-minimization for Barndorff-Nielsen and Shephard models, Finance and Stochastic, 21 (2017), 551-592.  doi: 10.1007/s00780-017-0324-8.  Google Scholar

[5]

C. G. Bowsher, Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, 141 (2007), 876-912.  doi: 10.1016/j.jeconom.2006.11.007.  Google Scholar

[6]

C. CeciK. Colaneri and A. Cretarola, Hedging of unit-linked life insurance contracts with unobservable mortality hazard rate via local risk-minimization, Insurance: Mathematics and Economics, 60 (2015), 47-60.  doi: 10.1016/j.insmatheco.2014.10.013.  Google Scholar

[7]

C. CeciK. Colaneri and A. Cretarola, Unit-linked life insurance policies: Optimal hedging in partially observable market models, Insurance: Mathematics and Economics, 76 (2017), 149-163.  doi: 10.1016/j.insmatheco.2017.07.005.  Google Scholar

[8]

T. Chan, Pricing contingent claims on stocks driven by L$\acute{e}$vy processes, The Annals of Applied Probability, 9 (1999), 504-528.  doi: 10.1214/aoap/1029962753.  Google Scholar

[9]

T. ChoulliL. Krawczyk and C. Stricker, $\mathscr{E}$-martingales and their applications in mathematical finance, The Annals of Applied Probability, 26 (1998), 853-876.  doi: 10.1214/aop/1022855653.  Google Scholar

[10]

T. ChoulliN. Vandaele and M. Vanmaele, The F$\ddot{o}$llmer-Schweizer decomposition: comparison and description, Stochastic Processes and their Applications, 120 (2010), 853-872.  doi: 10.1016/j.spa.2010.02.004.  Google Scholar

[11]

S. N. Cohen and R. J. Elliott, Stochastic Calculus and Applications, Probability and its Applications. Springer, Cham, 2015. doi: 10.1007/978-1-4939-2867-5.  Google Scholar

[12]

N. Dacev, The necessity of legal arrangement of unit-linked life insurance products, UTMS Journal of Economics, 8 (2017), 259-269.   Google Scholar

[13]

A. Dassios and H. Zhao, Exact simulation of Hawkes process with exponentially decaying intensity, Electronic Communications in Probability, 18 (2013), 1-13.  doi: 10.1214/ECP.v18-2717.  Google Scholar

[14]

E. ErraisK. Giesecke and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM Journal on Financial Mathematics, 1 (2010), 642-665.  doi: 10.1137/090771272.  Google Scholar

[15]

H. F$\ddot{o}$llmer and D. Sondermann, Hedging of non-redundant contingent claims, Contributions to Mathematical Economics. In honor of G. Debreu (Eds. W. Hildenbrand and A. Mas-Colell), Elsevier Science Publ., North-Holland, (1986), 205–223.  Google Scholar

[16]

D. Hainaut, A bivariate Hawkes process for interest rate modeling, Economic Modelling, 57 (2016), 180-196.  doi: 10.1016/j.econmod.2016.04.016.  Google Scholar

[17]

D. Hainaut and F. Moraux, Hedging of options in presence of jump clustering, Journal of Computational Finance, 28 (2018), 1-35.  doi: 10.21314/JCF.2018.354.  Google Scholar

[18]

A. G. Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B, 33 (1971), 438-443.  doi: 10.1111/j.2517-6161.1971.tb01530.x.  Google Scholar

[19]

A. G. Hawkes, Spectra of some self exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.  doi: 10.1093/biomet/58.1.83.  Google Scholar

[20]

A. G. Hawkes, Hawkes processes and their applications to finance: A review, Quantitative Finance, 17 (2018), 193-198.  doi: 10.1080/14697688.2017.1403131.  Google Scholar

[21]

L. F. B. Henriksen and T. Møller, Local risk-minimization with longevity bonds, Applied Stochastic Models in Business and Industry, 31 (2015), 241-263.  doi: 10.1002/asmb.2028.  Google Scholar

[22]

T. Kokholm, Pricing and hedging of derivatives in contagious markets, Journal of Banking and Finance, 66 (2016), 19-34.  doi: 10.1016/j.jbankfin.2016.01.012.  Google Scholar

[23]

K. Lee and S. Song, Insiders' hedging in a jump diffusion model, Quantitative Finance, 7 (2007), 537-545.  doi: 10.1080/14697680601043191.  Google Scholar

[24]

K. Lee and P. Protter, Hedging claims with feedback jumps in the price process, Communications on Stochastic Analysis, 2 (2008), 125-143.  doi: 10.31390/cosa.2.1.09.  Google Scholar

[25]

J. Li and A. Szimayer, The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts, Insurance: Mathematics and Economics, 49 (2011), 471-486.  doi: 10.1016/j.insmatheco.2011.08.001.  Google Scholar

[26]

Y. MaK. Shrestha and W. Xu, Pricing vulnerable options with jump clustering, The Journal of Futures Markets, 37 (2017), 1155-1178.  doi: 10.1002/fut.21843.  Google Scholar

[27]

T. Møller, Risk minimizing hedging strategies for unit-linked life insurance contracts, Astin Bulletin, 28 (1998), 17-47.  doi: 10.2143/AST.28.1.519077.  Google Scholar

[28]

O. Nteukam T.F. Planchet and P.-E. Thérond, Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee, Insurance: Mathematics and Economics, 48 (2011), 161-175.  doi: 10.1016/j.insmatheco.2010.10.011.  Google Scholar

[29]

J. Pansera, Discrete-time local risk-minimization of payment processes and applications to equity-linked life-insurance contracts, Insurance: Mathematics and Economics, 50 (2012), 1-11.  doi: 10.1016/j.insmatheco.2011.10.001.  Google Scholar

[30]

S.-H. Park and K. Lee, Insiders' hedging in a stochastic volatility model, IMA Journal of Management and Mathematics, 27 (2016), 281-2951.  doi: 10.1093/imaman/dpu023.  Google Scholar

[31]

E. Platen and N. Bruti-Liberati, Numerical solution of stochastic differential equations with jumps in finance, Springer, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-13694-8.  Google Scholar

[32]

M. Riesner, Hedging life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 38 (2006), 599-608.  doi: 10.1016/j.insmatheco.2005.12.004.  Google Scholar

[33]

M. Schweizer, Hedging of Options in a General Semimartingale Model, Ph.D thesis, Zurich University, Switzerland, 1988. Google Scholar

[34]

M. Schweizer, A guided tour through quadratic hedging approaches, in Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk Management, Cambridge University Press, Cambridge, (2001), 538–574. doi: 10.1017/CBO9780511569708.016.  Google Scholar

[35]

Y. Shen and B. Zou, Mean-variance portfolio selection in contagious markets, preprint. doi: 10.13140/RG.2.2.36243.02088.  Google Scholar

[36]

G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodology and Computing in Applied Probability, 12 (2010), 415-429.  doi: 10.1007/s11009-008-9110-6.  Google Scholar

[37]

N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 42 (2008), 1128-1137.  doi: 10.1016/j.insmatheco.2008.03.001.  Google Scholar

[38]

X. ZhangJ. Xiong and Y. Shen, Bond and option pricing for interest rate model with clustering effects, Quantitative Finance, 18 (2018), 969-981.  doi: 10.1080/14697688.2017.1388534.  Google Scholar

[39]

L. Zhu, Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps, Journal of Applied Probability, 51 (2014), 699-712.  doi: 10.1239/jap/1409932668.  Google Scholar

show all references

References:
[1]

Y. Aït-SahaliaJ. Cacho-Diaz and R. J. A. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.  doi: 10.1016/j.jfineco.2015.03.002.  Google Scholar

[2]

Y. Aït-Sahalia and T. R. Hurd, Portfolio choice in markets with contagion, Journal of Financial Economics, 14 (2016), 1-28.  doi: 10.1093/jjfinec/nbv024.  Google Scholar

[3]

T. Arai, Y. Imai and R. Suzuki, Numerical analysis on local risk-minimization for exponential L$\acute{e}$vy models, International Journal of Theoretical and Applied Finance, 19 (2016), 1650008, 27 pp. doi: 10.1142/S0219024916500084.  Google Scholar

[4]

T. AraiY. Imai and R. Suzuki, Local risk-minimization for Barndorff-Nielsen and Shephard models, Finance and Stochastic, 21 (2017), 551-592.  doi: 10.1007/s00780-017-0324-8.  Google Scholar

[5]

C. G. Bowsher, Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, 141 (2007), 876-912.  doi: 10.1016/j.jeconom.2006.11.007.  Google Scholar

[6]

C. CeciK. Colaneri and A. Cretarola, Hedging of unit-linked life insurance contracts with unobservable mortality hazard rate via local risk-minimization, Insurance: Mathematics and Economics, 60 (2015), 47-60.  doi: 10.1016/j.insmatheco.2014.10.013.  Google Scholar

[7]

C. CeciK. Colaneri and A. Cretarola, Unit-linked life insurance policies: Optimal hedging in partially observable market models, Insurance: Mathematics and Economics, 76 (2017), 149-163.  doi: 10.1016/j.insmatheco.2017.07.005.  Google Scholar

[8]

T. Chan, Pricing contingent claims on stocks driven by L$\acute{e}$vy processes, The Annals of Applied Probability, 9 (1999), 504-528.  doi: 10.1214/aoap/1029962753.  Google Scholar

[9]

T. ChoulliL. Krawczyk and C. Stricker, $\mathscr{E}$-martingales and their applications in mathematical finance, The Annals of Applied Probability, 26 (1998), 853-876.  doi: 10.1214/aop/1022855653.  Google Scholar

[10]

T. ChoulliN. Vandaele and M. Vanmaele, The F$\ddot{o}$llmer-Schweizer decomposition: comparison and description, Stochastic Processes and their Applications, 120 (2010), 853-872.  doi: 10.1016/j.spa.2010.02.004.  Google Scholar

[11]

S. N. Cohen and R. J. Elliott, Stochastic Calculus and Applications, Probability and its Applications. Springer, Cham, 2015. doi: 10.1007/978-1-4939-2867-5.  Google Scholar

[12]

N. Dacev, The necessity of legal arrangement of unit-linked life insurance products, UTMS Journal of Economics, 8 (2017), 259-269.   Google Scholar

[13]

A. Dassios and H. Zhao, Exact simulation of Hawkes process with exponentially decaying intensity, Electronic Communications in Probability, 18 (2013), 1-13.  doi: 10.1214/ECP.v18-2717.  Google Scholar

[14]

E. ErraisK. Giesecke and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM Journal on Financial Mathematics, 1 (2010), 642-665.  doi: 10.1137/090771272.  Google Scholar

[15]

H. F$\ddot{o}$llmer and D. Sondermann, Hedging of non-redundant contingent claims, Contributions to Mathematical Economics. In honor of G. Debreu (Eds. W. Hildenbrand and A. Mas-Colell), Elsevier Science Publ., North-Holland, (1986), 205–223.  Google Scholar

[16]

D. Hainaut, A bivariate Hawkes process for interest rate modeling, Economic Modelling, 57 (2016), 180-196.  doi: 10.1016/j.econmod.2016.04.016.  Google Scholar

[17]

D. Hainaut and F. Moraux, Hedging of options in presence of jump clustering, Journal of Computational Finance, 28 (2018), 1-35.  doi: 10.21314/JCF.2018.354.  Google Scholar

[18]

A. G. Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B, 33 (1971), 438-443.  doi: 10.1111/j.2517-6161.1971.tb01530.x.  Google Scholar

[19]

A. G. Hawkes, Spectra of some self exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.  doi: 10.1093/biomet/58.1.83.  Google Scholar

[20]

A. G. Hawkes, Hawkes processes and their applications to finance: A review, Quantitative Finance, 17 (2018), 193-198.  doi: 10.1080/14697688.2017.1403131.  Google Scholar

[21]

L. F. B. Henriksen and T. Møller, Local risk-minimization with longevity bonds, Applied Stochastic Models in Business and Industry, 31 (2015), 241-263.  doi: 10.1002/asmb.2028.  Google Scholar

[22]

T. Kokholm, Pricing and hedging of derivatives in contagious markets, Journal of Banking and Finance, 66 (2016), 19-34.  doi: 10.1016/j.jbankfin.2016.01.012.  Google Scholar

[23]

K. Lee and S. Song, Insiders' hedging in a jump diffusion model, Quantitative Finance, 7 (2007), 537-545.  doi: 10.1080/14697680601043191.  Google Scholar

[24]

K. Lee and P. Protter, Hedging claims with feedback jumps in the price process, Communications on Stochastic Analysis, 2 (2008), 125-143.  doi: 10.31390/cosa.2.1.09.  Google Scholar

[25]

J. Li and A. Szimayer, The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts, Insurance: Mathematics and Economics, 49 (2011), 471-486.  doi: 10.1016/j.insmatheco.2011.08.001.  Google Scholar

[26]

Y. MaK. Shrestha and W. Xu, Pricing vulnerable options with jump clustering, The Journal of Futures Markets, 37 (2017), 1155-1178.  doi: 10.1002/fut.21843.  Google Scholar

[27]

T. Møller, Risk minimizing hedging strategies for unit-linked life insurance contracts, Astin Bulletin, 28 (1998), 17-47.  doi: 10.2143/AST.28.1.519077.  Google Scholar

[28]

O. Nteukam T.F. Planchet and P.-E. Thérond, Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee, Insurance: Mathematics and Economics, 48 (2011), 161-175.  doi: 10.1016/j.insmatheco.2010.10.011.  Google Scholar

[29]

J. Pansera, Discrete-time local risk-minimization of payment processes and applications to equity-linked life-insurance contracts, Insurance: Mathematics and Economics, 50 (2012), 1-11.  doi: 10.1016/j.insmatheco.2011.10.001.  Google Scholar

[30]

S.-H. Park and K. Lee, Insiders' hedging in a stochastic volatility model, IMA Journal of Management and Mathematics, 27 (2016), 281-2951.  doi: 10.1093/imaman/dpu023.  Google Scholar

[31]

E. Platen and N. Bruti-Liberati, Numerical solution of stochastic differential equations with jumps in finance, Springer, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-13694-8.  Google Scholar

[32]

M. Riesner, Hedging life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 38 (2006), 599-608.  doi: 10.1016/j.insmatheco.2005.12.004.  Google Scholar

[33]

M. Schweizer, Hedging of Options in a General Semimartingale Model, Ph.D thesis, Zurich University, Switzerland, 1988. Google Scholar

[34]

M. Schweizer, A guided tour through quadratic hedging approaches, in Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk Management, Cambridge University Press, Cambridge, (2001), 538–574. doi: 10.1017/CBO9780511569708.016.  Google Scholar

[35]

Y. Shen and B. Zou, Mean-variance portfolio selection in contagious markets, preprint. doi: 10.13140/RG.2.2.36243.02088.  Google Scholar

[36]

G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodology and Computing in Applied Probability, 12 (2010), 415-429.  doi: 10.1007/s11009-008-9110-6.  Google Scholar

[37]

N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a L$\acute{e}$vy process financial market, Insurance: Mathematics and Economics, 42 (2008), 1128-1137.  doi: 10.1016/j.insmatheco.2008.03.001.  Google Scholar

[38]

X. ZhangJ. Xiong and Y. Shen, Bond and option pricing for interest rate model with clustering effects, Quantitative Finance, 18 (2018), 969-981.  doi: 10.1080/14697688.2017.1388534.  Google Scholar

[39]

L. Zhu, Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps, Journal of Applied Probability, 51 (2014), 699-712.  doi: 10.1239/jap/1409932668.  Google Scholar

Figure 1.  Paths of intensity process $ \lambda_t $ and stock price process $ S_t $
Figure 2.  Number of stock $ \xi_{t}^{PE\ast} $ with different strike prices $ K $
Figure 3, respectively">Figure 3.  Effects of the jump size $ Z $ on $ \xi_{0}^{PE\ast} $ and $ \Delta_{0} $. We assume the jump size $ Z_j\in U(-0.1, 0.1) $ and $ Z_j\in U(-0.5, 0.5) $ in the left panel and the right panel of Figure 3, respectively
Figure 4.  Effects of the intensity $ \lambda $ on $ \xi_{0}^{PE\ast} $
[1]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[2]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[3]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[4]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[5]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[6]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[7]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[8]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[9]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[10]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[11]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[12]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[13]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[14]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[15]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[16]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[17]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[18]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[19]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (38)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]