doi: 10.3934/jimo.2021073

Uncertain spring vibration equation

1. 

School of Management and Engineering, Capital University of Economics and Business, Beijing, China

2. 

Department of Financial Engineering, Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Wei Dai

Received  July 2020 Revised  January 2021 Published  April 2021

Fund Project: The first author is supported by the Beijing Municipal Education Commission Foundation of China (No. KM202110038001), the Young Academic Innovation Team of Capital University of Economics and Business (No. QNTD202002), and the special fund of basic scientific research business fees of Beijing Municipal University of Capital University of Economics and Business (No. XRZ2020016)

The spring vibration equation is to model the behavior of a spring which has a time varying force acting on it. The stochastic spring vibration equation was proposed for modeling spring vibration phenomena with noise described by Wiener process. However, there exists a paradox in some cases. Thus, as a counterpart, this paper proposes uncertain spring vibration equation driven by Liu process to describe the noise. Moreover, the analytic solution of uncertain spring vibration equation is derived and the inverse uncertainty distribution of solution is proved. At last, this paper presents a paradox of stochastic spring vibration equation.

Citation: Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021073
References:
[1]

R. CaoW. Hou and Y. Gao, An entropy-based three-stage approach for multi-objective system reliability optimization considering uncertainty, Engineering Optimization, 50 (2018), 1453-1469.  doi: 10.1080/0305215X.2017.1402014.  Google Scholar

[2]

T. K. Caughey, Derivation and application of the fokker-planck equation to discrete nonlinear dynamic systems subjected to white random excitation, Journal of the Acoustical Society of America, 35 (1963), 1683-1692.  doi: 10.1121/1.1918788.  Google Scholar

[3]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[4]

S. Crandall, Random Vibration, Technology Press of MIT and John Wiley and Sons, New York, 1958. Google Scholar

[5]

A. Einstein, On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat, Annalen der Physik, 17 (1905), 549-560.   Google Scholar

[6]

X. Gao and L. Jia, Degree-constrained minimum spanning tree problem with uncertain edge weights, Applied Soft Computing, 56 (2017), 580-588.  doi: 10.1016/j.asoc.2016.07.054.  Google Scholar

[7]

R. Gao, Uncertain wave equation with infinite half-boundary, Applied Mathematics and Computation, 304 (2017), 28-40.  doi: 10.1016/j.amc.2016.12.003.  Google Scholar

[8]

T. Gard, Introduction to Stoachastic Differential Equations, Marcel Dekker, 1988. Google Scholar

[9]

B. Li and Y. Zhu, Parametric optimal control of uncertain systems under an optimistic value criterion, Engineering Optimization, 50 (2018), 55-69.  doi: 10.1080/0305215X.2017.1303054.  Google Scholar

[10]

B. Liu, Uncertainty Theory. An introduction to its axiomatic foundations, Studies in Fuzziness and Soft Computing, 154. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[11]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[12]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[13]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[14]

B. Liu, Toward ucertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Ariticle 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[15]

W. T. Thomson and M. V. Barton, The response of mechanical systems to random excitations, Journal of Applied Mechanics, 24 (1957), 248-251.   Google Scholar

[16]

G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Physical Review, 36 (1930), 823-841.  doi: 10.1103/PhysRev.36.823.  Google Scholar

[17]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[18]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819–826. doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[19]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379–403. doi: 10.1007/s10700-016-9253-9.  Google Scholar

[20]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[21]

X. Yang, Solving uncertain heat equation via numerical method, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[22]

X. Yang, Stability in measure for uncertain heat equations, Discrete and Continuous Dynamical Systems Series B, 24 (2019), 6533-6540.  doi: 10.3934/dcdsb.2019152.  Google Scholar

[23]

X. Yang and Y. Ni, Extreme values problem of uncertain heat equation, Journal of Industrial and Management Optimization, 15 (2019), 1995-2008.  doi: 10.3934/jimo.2018133.  Google Scholar

[24]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent and Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[25]

K. Yao, Uncertainty Differential Equation, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[26]

K. Yao and B. Liu, Parameter estimation in uncertain differential equations, Fuzzy Optimization and Decision Making, 19 (2020), 1-12.  doi: 10.1007/s10700-019-09310-y.  Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552.  Google Scholar

show all references

References:
[1]

R. CaoW. Hou and Y. Gao, An entropy-based three-stage approach for multi-objective system reliability optimization considering uncertainty, Engineering Optimization, 50 (2018), 1453-1469.  doi: 10.1080/0305215X.2017.1402014.  Google Scholar

[2]

T. K. Caughey, Derivation and application of the fokker-planck equation to discrete nonlinear dynamic systems subjected to white random excitation, Journal of the Acoustical Society of America, 35 (1963), 1683-1692.  doi: 10.1121/1.1918788.  Google Scholar

[3]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[4]

S. Crandall, Random Vibration, Technology Press of MIT and John Wiley and Sons, New York, 1958. Google Scholar

[5]

A. Einstein, On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat, Annalen der Physik, 17 (1905), 549-560.   Google Scholar

[6]

X. Gao and L. Jia, Degree-constrained minimum spanning tree problem with uncertain edge weights, Applied Soft Computing, 56 (2017), 580-588.  doi: 10.1016/j.asoc.2016.07.054.  Google Scholar

[7]

R. Gao, Uncertain wave equation with infinite half-boundary, Applied Mathematics and Computation, 304 (2017), 28-40.  doi: 10.1016/j.amc.2016.12.003.  Google Scholar

[8]

T. Gard, Introduction to Stoachastic Differential Equations, Marcel Dekker, 1988. Google Scholar

[9]

B. Li and Y. Zhu, Parametric optimal control of uncertain systems under an optimistic value criterion, Engineering Optimization, 50 (2018), 55-69.  doi: 10.1080/0305215X.2017.1303054.  Google Scholar

[10]

B. Liu, Uncertainty Theory. An introduction to its axiomatic foundations, Studies in Fuzziness and Soft Computing, 154. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[11]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[12]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[13]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[14]

B. Liu, Toward ucertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Ariticle 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[15]

W. T. Thomson and M. V. Barton, The response of mechanical systems to random excitations, Journal of Applied Mechanics, 24 (1957), 248-251.   Google Scholar

[16]

G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Physical Review, 36 (1930), 823-841.  doi: 10.1103/PhysRev.36.823.  Google Scholar

[17]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[18]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819–826. doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[19]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379–403. doi: 10.1007/s10700-016-9253-9.  Google Scholar

[20]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[21]

X. Yang, Solving uncertain heat equation via numerical method, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[22]

X. Yang, Stability in measure for uncertain heat equations, Discrete and Continuous Dynamical Systems Series B, 24 (2019), 6533-6540.  doi: 10.3934/dcdsb.2019152.  Google Scholar

[23]

X. Yang and Y. Ni, Extreme values problem of uncertain heat equation, Journal of Industrial and Management Optimization, 15 (2019), 1995-2008.  doi: 10.3934/jimo.2018133.  Google Scholar

[24]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent and Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[25]

K. Yao, Uncertainty Differential Equation, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[26]

K. Yao and B. Liu, Parameter estimation in uncertain differential equations, Fuzzy Optimization and Decision Making, 19 (2020), 1-12.  doi: 10.1007/s10700-019-09310-y.  Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552.  Google Scholar

[1]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[2]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[5]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[12]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[13]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[15]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[16]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[17]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[18]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[19]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[20]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (12)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]