doi: 10.3934/jimo.2021074

Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system

1. 

School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

* Corresponding author: Ka Fai Cedric Yiu

Received  September 2020 Revised  January 2021 Published  April 2021

This paper investigates the mean-field stochastic linear quadratic optimal control problem of Markov regime switching system (M-MF-SLQ, for short). The representation of the cost functional for the M-MF-SLQ is derived using the technique of operators. It is shown that the convexity of the cost functional is necessary for the finiteness of the M-MF-SLQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem, is constructed. We demonstrate with a few examples that our results can be employed for tackling some financial problems such as mean-variance portfolio selection problem.

Citation: Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021074
References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444. doi: 10.1137/0314028.  Google Scholar

[3]

R. BuckdahnB. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.  doi: 10.1007/s00245-011-9136-y.  Google Scholar

[4]

R. BuckdahnB. DjehicheJ. Li and S. Peng, Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.  doi: 10.1214/08-AOP442.  Google Scholar

[5]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844. doi: 10.1109/TAC.2014.2311875.  Google Scholar

[6]

C. Donnelly, Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.  doi: 10.1007/s00245-010-9130-9.  Google Scholar

[7]

C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461. doi: 10.1137/100809271.  Google Scholar

[8]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995.  Google Scholar

[9]

R. ElliottX. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[10]

J. HuangX. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[11]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.   Google Scholar

[12]

H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122. doi: 10.1109/TAC.1962.1105490.  Google Scholar

[13]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[14]

X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp. doi: 10.1186/s41546-016-0002-3.  Google Scholar

[15]

X. LiX. Y. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.  doi: 10.1023/A:1024887007165.  Google Scholar

[16]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[17]

Y. LiuG. Yin and X. Y. Zhou, Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.  doi: 10.1016/j.automatica.2005.01.002.  Google Scholar

[18]

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[19]

J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.  doi: 10.1137/140953642.  Google Scholar

[20]

J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308. doi: 10.1137/15M103532X.  Google Scholar

[21]

J. Sun, Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.  doi: 10.1051/cocv/2016023.  Google Scholar

[22]

R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.  doi: 10.1016/j.sysconle.2012.06.006.  Google Scholar

[23]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697. doi: 10.1137/0306044.  Google Scholar

[24]

Z. Wu and X.-R. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.   Google Scholar

[25]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[26]

K.-F. C. YiuJ. LiuT. K. Siu and W.-K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[28]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.  doi: 10.1137/120892477.  Google Scholar

[29]

Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359. doi: 10.1051/cocv/2016055.  Google Scholar

[30]

X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305. doi: 10.1093/imaman/dpr018.  Google Scholar

[31]

X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar

[32]

X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592. doi: 10.1137/17M112395X.  Google Scholar

[33]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444. doi: 10.1137/0314028.  Google Scholar

[3]

R. BuckdahnB. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.  doi: 10.1007/s00245-011-9136-y.  Google Scholar

[4]

R. BuckdahnB. DjehicheJ. Li and S. Peng, Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.  doi: 10.1214/08-AOP442.  Google Scholar

[5]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844. doi: 10.1109/TAC.2014.2311875.  Google Scholar

[6]

C. Donnelly, Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.  doi: 10.1007/s00245-010-9130-9.  Google Scholar

[7]

C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461. doi: 10.1137/100809271.  Google Scholar

[8]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995.  Google Scholar

[9]

R. ElliottX. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[10]

J. HuangX. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[11]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.   Google Scholar

[12]

H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122. doi: 10.1109/TAC.1962.1105490.  Google Scholar

[13]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[14]

X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp. doi: 10.1186/s41546-016-0002-3.  Google Scholar

[15]

X. LiX. Y. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.  doi: 10.1023/A:1024887007165.  Google Scholar

[16]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[17]

Y. LiuG. Yin and X. Y. Zhou, Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.  doi: 10.1016/j.automatica.2005.01.002.  Google Scholar

[18]

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[19]

J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.  doi: 10.1137/140953642.  Google Scholar

[20]

J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308. doi: 10.1137/15M103532X.  Google Scholar

[21]

J. Sun, Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.  doi: 10.1051/cocv/2016023.  Google Scholar

[22]

R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.  doi: 10.1016/j.sysconle.2012.06.006.  Google Scholar

[23]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697. doi: 10.1137/0306044.  Google Scholar

[24]

Z. Wu and X.-R. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.   Google Scholar

[25]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[26]

K.-F. C. YiuJ. LiuT. K. Siu and W.-K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[28]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.  doi: 10.1137/120892477.  Google Scholar

[29]

Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359. doi: 10.1051/cocv/2016055.  Google Scholar

[30]

X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305. doi: 10.1093/imaman/dpr018.  Google Scholar

[31]

X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar

[32]

X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592. doi: 10.1137/17M112395X.  Google Scholar

[33]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

[1]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[2]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[3]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[4]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[9]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[12]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[13]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[14]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[15]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[18]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

2019 Impact Factor: 1.366

Article outline

[Back to Top]