-
Previous Article
Stability for semivectorial bilevel programs
- JIMO Home
- This Issue
-
Next Article
Solving fuzzy linear fractional set covering problem by a goal programming based solution approach
Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system
1. | School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China |
This paper investigates the mean-field stochastic linear quadratic optimal control problem of Markov regime switching system (M-MF-SLQ, for short). The representation of the cost functional for the M-MF-SLQ is derived using the technique of operators. It is shown that the convexity of the cost functional is necessary for the finiteness of the M-MF-SLQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem, is constructed. We demonstrate with a few examples that our results can be employed for tackling some financial problems such as mean-variance portfolio selection problem.
References:
[1] |
D. Andersson and B. Djehiche,
A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444.
doi: 10.1137/0314028. |
[3] |
R. Buckdahn, B. Djehiche and J. Li,
A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.
doi: 10.1007/s00245-011-9136-y. |
[4] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng,
Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442. |
[5] |
X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844.
doi: 10.1109/TAC.2014.2311875. |
[6] |
C. Donnelly,
Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.
doi: 10.1007/s00245-010-9130-9. |
[7] |
C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461.
doi: 10.1137/100809271. |
[8] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995. |
[9] |
R. Elliott, X. Li and Y.-H. Ni,
Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.
doi: 10.1016/j.automatica.2013.08.017. |
[10] |
J. Huang, X. Li and J. Yong,
A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.
doi: 10.3934/mcrf.2015.5.97. |
[11] |
M. Kac,
Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.
|
[12] |
H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122.
doi: 10.1109/TAC.1962.1105490. |
[13] |
X. Li and X. Y. Zhou,
Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.
doi: 10.4310/CIS.2002.v2.n3.a4. |
[14] |
X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp.
doi: 10.1186/s41546-016-0002-3. |
[15] |
X. Li, X. Y. Zhou and M. Ait Rami,
Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.
doi: 10.1023/A:1024887007165. |
[16] |
X. Li and X. Y. Zhou,
Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.
doi: 10.1214/105051606000000349. |
[17] |
Y. Liu, G. Yin and X. Y. Zhou,
Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.
doi: 10.1016/j.automatica.2005.01.002. |
[18] |
R. Penrose,
A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[19] |
J. Sun and J. Yong,
Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.
doi: 10.1137/140953642. |
[20] |
J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308.
doi: 10.1137/15M103532X. |
[21] |
J. Sun,
Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.
doi: 10.1051/cocv/2016023. |
[22] |
R. Tao and Z. Wu,
Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.
doi: 10.1016/j.sysconle.2012.06.006. |
[23] |
W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697.
doi: 10.1137/0306044. |
[24] |
Z. Wu and X.-R. Wang,
FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.
|
[25] |
G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4346-9. |
[26] |
K.-F. C. Yiu, J. Liu, T. K. Siu and W.-K. Ching,
Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.
doi: 10.1016/j.automatica.2010.02.027. |
[27] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[28] |
J. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.
doi: 10.1137/120892477. |
[29] |
Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359.
doi: 10.1051/cocv/2016055. |
[30] |
X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305.
doi: 10.1093/imaman/dpr018. |
[31] |
X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar |
[32] |
X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592.
doi: 10.1137/17M112395X. |
[33] |
X. Y. Zhou and G. Yin,
Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.
doi: 10.1137/S0363012902405583. |
show all references
References:
[1] |
D. Andersson and B. Djehiche,
A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444.
doi: 10.1137/0314028. |
[3] |
R. Buckdahn, B. Djehiche and J. Li,
A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.
doi: 10.1007/s00245-011-9136-y. |
[4] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng,
Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442. |
[5] |
X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844.
doi: 10.1109/TAC.2014.2311875. |
[6] |
C. Donnelly,
Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.
doi: 10.1007/s00245-010-9130-9. |
[7] |
C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461.
doi: 10.1137/100809271. |
[8] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995. |
[9] |
R. Elliott, X. Li and Y.-H. Ni,
Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.
doi: 10.1016/j.automatica.2013.08.017. |
[10] |
J. Huang, X. Li and J. Yong,
A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.
doi: 10.3934/mcrf.2015.5.97. |
[11] |
M. Kac,
Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.
|
[12] |
H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122.
doi: 10.1109/TAC.1962.1105490. |
[13] |
X. Li and X. Y. Zhou,
Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.
doi: 10.4310/CIS.2002.v2.n3.a4. |
[14] |
X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp.
doi: 10.1186/s41546-016-0002-3. |
[15] |
X. Li, X. Y. Zhou and M. Ait Rami,
Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.
doi: 10.1023/A:1024887007165. |
[16] |
X. Li and X. Y. Zhou,
Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.
doi: 10.1214/105051606000000349. |
[17] |
Y. Liu, G. Yin and X. Y. Zhou,
Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.
doi: 10.1016/j.automatica.2005.01.002. |
[18] |
R. Penrose,
A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[19] |
J. Sun and J. Yong,
Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.
doi: 10.1137/140953642. |
[20] |
J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308.
doi: 10.1137/15M103532X. |
[21] |
J. Sun,
Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.
doi: 10.1051/cocv/2016023. |
[22] |
R. Tao and Z. Wu,
Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.
doi: 10.1016/j.sysconle.2012.06.006. |
[23] |
W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697.
doi: 10.1137/0306044. |
[24] |
Z. Wu and X.-R. Wang,
FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.
|
[25] |
G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4346-9. |
[26] |
K.-F. C. Yiu, J. Liu, T. K. Siu and W.-K. Ching,
Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.
doi: 10.1016/j.automatica.2010.02.027. |
[27] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[28] |
J. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.
doi: 10.1137/120892477. |
[29] |
Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359.
doi: 10.1051/cocv/2016055. |
[30] |
X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305.
doi: 10.1093/imaman/dpr018. |
[31] |
X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar |
[32] |
X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592.
doi: 10.1137/17M112395X. |
[33] |
X. Y. Zhou and G. Yin,
Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.
doi: 10.1137/S0363012902405583. |
[1] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
[2] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[3] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[4] |
René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021012 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[7] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[8] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[9] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[10] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[11] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[12] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[13] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[14] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[15] |
Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051 |
[16] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[17] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[18] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[19] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[20] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]