doi: 10.3934/jimo.2021074

Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system

1. 

School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

* Corresponding author: Ka Fai Cedric Yiu

Received  September 2020 Revised  January 2021 Early access  April 2021

This paper investigates the mean-field stochastic linear quadratic optimal control problem of Markov regime switching system (M-MF-SLQ, for short). The representation of the cost functional for the M-MF-SLQ is derived using the technique of operators. It is shown that the convexity of the cost functional is necessary for the finiteness of the M-MF-SLQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem, is constructed. We demonstrate with a few examples that our results can be employed for tackling some financial problems such as mean-variance portfolio selection problem.

Citation: Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021074
References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444. doi: 10.1137/0314028.  Google Scholar

[3]

R. BuckdahnB. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.  doi: 10.1007/s00245-011-9136-y.  Google Scholar

[4]

R. BuckdahnB. DjehicheJ. Li and S. Peng, Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.  doi: 10.1214/08-AOP442.  Google Scholar

[5]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844. doi: 10.1109/TAC.2014.2311875.  Google Scholar

[6]

C. Donnelly, Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.  doi: 10.1007/s00245-010-9130-9.  Google Scholar

[7]

C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461. doi: 10.1137/100809271.  Google Scholar

[8]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995.  Google Scholar

[9]

R. ElliottX. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[10]

J. HuangX. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[11]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.   Google Scholar

[12]

H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122. doi: 10.1109/TAC.1962.1105490.  Google Scholar

[13]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[14]

X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp. doi: 10.1186/s41546-016-0002-3.  Google Scholar

[15]

X. LiX. Y. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.  doi: 10.1023/A:1024887007165.  Google Scholar

[16]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[17]

Y. LiuG. Yin and X. Y. Zhou, Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.  doi: 10.1016/j.automatica.2005.01.002.  Google Scholar

[18]

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[19]

J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.  doi: 10.1137/140953642.  Google Scholar

[20]

J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308. doi: 10.1137/15M103532X.  Google Scholar

[21]

J. Sun, Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.  doi: 10.1051/cocv/2016023.  Google Scholar

[22]

R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.  doi: 10.1016/j.sysconle.2012.06.006.  Google Scholar

[23]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697. doi: 10.1137/0306044.  Google Scholar

[24]

Z. Wu and X.-R. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.   Google Scholar

[25]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[26]

K.-F. C. YiuJ. LiuT. K. Siu and W.-K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[28]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.  doi: 10.1137/120892477.  Google Scholar

[29]

Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359. doi: 10.1051/cocv/2016055.  Google Scholar

[30]

X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305. doi: 10.1093/imaman/dpr018.  Google Scholar

[31]

X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar

[32]

X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592. doi: 10.1137/17M112395X.  Google Scholar

[33]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 63 (2011), 341-356.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419–444. doi: 10.1137/0314028.  Google Scholar

[3]

R. BuckdahnB. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type, Applied Mathematics and Optimization, 64 (2011), 197-216.  doi: 10.1007/s00245-011-9136-y.  Google Scholar

[4]

R. BuckdahnB. DjehicheJ. Li and S. Peng, Mean-field backward stochastic differential equations: A limit approach, Annals of Probability, 37 (2009), 1524-1565.  doi: 10.1214/08-AOP442.  Google Scholar

[5]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833–1844. doi: 10.1109/TAC.2014.2311875.  Google Scholar

[6]

C. Donnelly, Suffcient stochastic maximum principle in a regime-switching diffusion model, Applied Mathematics & Optimization, 64 (2011), 155-169.  doi: 10.1007/s00245-010-9130-9.  Google Scholar

[7]

C. Donnelly and A. J. Heunis, Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints, SIAM Journal on Control and Optimization, 50 (2012), 2431–2461. doi: 10.1137/100809271.  Google Scholar

[8]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics, New York: Springer-Verlag, 1995.  Google Scholar

[9]

R. ElliottX. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[10]

J. HuangX. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Mathematical Control & Related Fields, 5 (2015), 97-139.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[11]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.   Google Scholar

[12]

H. Kushner, Optimal stochastic control, IRE Transactions on Automatic Control, 7 (1962), 120–122. doi: 10.1109/TAC.1962.1105490.  Google Scholar

[13]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications in Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[14]

X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probability, Uncertainty and Quantitative Risk, 1 (2016), Paper No. 2, 24 pp. doi: 10.1186/s41546-016-0002-3.  Google Scholar

[15]

X. LiX. Y. Zhou and M. Ait Rami, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon, Journal of Global Optimization, 27 (2003), 149-175.  doi: 10.1023/A:1024887007165.  Google Scholar

[16]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80% rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[17]

Y. LiuG. Yin and X. Y. Zhou, Near-optimal controls of random-switching LQ problems with indefinite control weight costs, Automatica, 41 (2005), 1063-1070.  doi: 10.1016/j.automatica.2005.01.002.  Google Scholar

[18]

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[19]

J. Sun and J. Yong, Linear quadratic stochastic differential games: open-loop and closed-loop saddle points, SIAM Journal on Control and Optimization, 52 (2014), 4082-4121.  doi: 10.1137/140953642.  Google Scholar

[20]

J. Sun, X. Li and J. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54 (2016), 2274–2308. doi: 10.1137/15M103532X.  Google Scholar

[21]

J. Sun, Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1099-1127.  doi: 10.1051/cocv/2016023.  Google Scholar

[22]

R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, Systems & Control Letters, 61 (2012), 911-917.  doi: 10.1016/j.sysconle.2012.06.006.  Google Scholar

[23]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control, 6 (1968), 681–697. doi: 10.1137/0306044.  Google Scholar

[24]

Z. Wu and X.-R. Wang, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821-826.   Google Scholar

[25]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[26]

K.-F. C. YiuJ. LiuT. K. Siu and W.-K. Ching, Optimal portfolios with regime switching and value-at-risk constraint, Automatica, 46 (2010), 979-989.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[27]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[28]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51 (2013), 2809-2838.  doi: 10.1137/120892477.  Google Scholar

[29]

Z. Yu, Infinite horizon jump-diffusion forward-backward stochastic differential equations and their application to backward linear-quadratic problems, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 1331–1359. doi: 10.1051/cocv/2016055.  Google Scholar

[30]

X. Zhang, R. J. Elliott, T. K. Siu and J. Guo, Markovian regime-switching market completion using additional markov jump assets, IMA Journal of Management Mathematics, 23 (2012), 283–305. doi: 10.1093/imaman/dpr018.  Google Scholar

[31]

X. Zhang and X. Li, Open-Loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markov regime-switching system, arXiv: 1809.01891, 2018. Google Scholar

[32]

X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type, SIAM Journal on Control and Optimization, 56 (2018), 2563–2592. doi: 10.1137/17M112395X.  Google Scholar

[33]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

[1]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[2]

Xun Li, Jingrui Sun, Jiongmin Yong. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2-. doi: 10.1186/s41546-016-0002-3

[3]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[4]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[5]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[6]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[7]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[8]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[9]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[10]

Jianhui Huang, Shujun Wang, Zhen Wu. Backward-forward linear-quadratic mean-field games with major and minor agents. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 8-. doi: 10.1186/s41546-016-0009-9

[11]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[12]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[13]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[14]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[15]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021034

[16]

Lin Xu, Dingjun Yao, Gongpin Cheng. Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax. Journal of Industrial & Management Optimization, 2020, 16 (1) : 325-356. doi: 10.3934/jimo.2018154

[17]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[18]

Robert S. Anderssen, Martin Kružík. Modelling of wheat-flour dough mixing as an open-loop hysteretic process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 283-293. doi: 10.3934/dcdsb.2013.18.283

[19]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[20]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

2020 Impact Factor: 1.801

Article outline

[Back to Top]