• Previous Article
    CCR model-based evaluation on the effectiveness and maturity of technological innovation
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand
doi: 10.3934/jimo.2021076

A new gradient computational formula for optimal control problems with time-delay

Shanghai University, Shanghai, 200444, China

* Corresponding author: Lei Yuan

Received  December 2020 Revised  February 2021 Published  April 2021

Fund Project: This work is supported by National Natural Science Foundation of China(NSFC), Grant No.11871039 and Science and Technology Commission of Shanghai Municipality(STCSM), Grant No. 20JC1413900.

In this paper, we consider a class of time-delay optimal control problem (TDOCP) with canonical equality and inequality constraints. By applying control parameterization method together with time-scaling transformation, a TDOCP can be readily solved by gradient-based optimization methods. The partial derivative of the cost as well as the constraint functions with respect to the decision variables are obtained by variational approach, which is inefficient when the discretization for the control function is relatively dense. For general optimal control problem without time-delay, co-state approach is an effective way to compute the gradients, however, when time-delay is involved in the dynamic system, the co-state system is not known. In this paper, we derive the co-state system for TDOCP to compute the gradients of the cost and constraints. Numerical results show that the computational efficiency is much higher when compared with the traditional variational approach.

Citation: Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021076
References:
[1]

J. T. Betts, S. L. Campbell and K. C. Thompson, Optimal control software for constrained nonlinear systems with delays, in IEEE International Symposium on Computer-Aided Control System Design (CACSD), IEEE, 2011,444–449. Google Scholar

[2]

Q. ChaiR. LoxtonK. L. Teo and C. Yang, A class of optimal state-delay control problems, Nonlinear Analysis: Real World Applications, 14 (2013), 1536-1550.  doi: 10.1016/j.nonrwa.2012.10.017.  Google Scholar

[3]

Q. ChaiR. LoxtonK. L. Teo and C. Yang, A unified parameter identification method for nonlinear time-delay systems, Journal of Industrial and Management Optimization, 9 (2013), 471-486.  doi: 10.3934/jimo.2013.9.471.  Google Scholar

[4]

Q. Q. ChaiC. H. YangK. L. Teo and W. H. Gui, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution, Control Engineering Practice, 20 (2012), 618-628.  doi: 10.1016/j.conengprac.2012.03.001.  Google Scholar

[5]

L. Denis-VidalC. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model, IEEE Transactions on Automatic Control, 51 (2006), 154-158.  doi: 10.1109/TAC.2005.861700.  Google Scholar

[6]

V. DeshmukhH. Ma and E. A. Butcher, Optimal control of parametrically excited linear delay differential systems via chebyshev polynomials, Optimal Control Applications and Methods, 27 (2006), 123-136.  doi: 10.1002/oca.769.  Google Scholar

[7]

C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18.  doi: 10.1016/0005-1098(88)90003-9.  Google Scholar

[8]

L. GöllmannD. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control–state constraints, Optimal Control Applications and Methods, 30 (2009), 341-365.  doi: 10.1002/oca.843.  Google Scholar

[9]

L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and Management Optimization, 10 (2014), 413-441.  doi: 10.3934/jimo.2014.10.413.  Google Scholar

[10]

K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313.  doi: 10.1007/BF02191855.  Google Scholar

[11]

C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control, Journal of Optimization Theory and Applications, 117 (2003), 69-92.  doi: 10.1023/A:1023600422807.  Google Scholar

[12]

H. W. J. LeeK. L. TeoV. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.   Google Scholar

[13]

H. W. J. LeeK. L. TeoV. Rehbock and L. S. Jennings, Control parametrization enhancing technique for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.  doi: 10.1016/S0005-1098(99)00050-3.  Google Scholar

[14]

B. LiC. J. YuK. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.  doi: 10.1007/s10957-011-9904-5.  Google Scholar

[15]

L. LiC. YuN. ZhangY. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.  Google Scholar

[16]

Q. LinR. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar

[17]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems B, 18 (2011), 59-76.   Google Scholar

[18]

R. C. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[19]

M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems: Analysis, Optimization and Applications, North-Holland Systems and Control Series, 9. North-Holland Publishing Co., Amsterdam, 1987.  Google Scholar

[20]

H. R. Marzban and S. M. Hoseini, An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays, Optimal Control Applications and Methods, 37 (2016), 682-707.  doi: 10.1002/oca.2187.  Google Scholar

[21]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[22]

A. NasirE. M. Atkins and I. Kolmanovsky, Robust science-optimal spacecraft control for circular orbit missions, IEEE Transactions on Systems Man and Cybernetics Systems, 50 (2020), 923-934.  doi: 10.1109/TSMC.2017.2767077.  Google Scholar

[23]

J. Nocedal and S. J. Wright, Numerical Optimization, 2$^nd$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.  Google Scholar

[24]

D. Stefanatos, Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49 (2013), 3079-3083.  doi: 10.1016/j.automatica.2013.07.020.  Google Scholar

[25]

R. F. StengelR. GhigliazzaN. Kulkarni and O. Laplace, Optimal control of innate immune response, Optimal Control Applications and Methods, 23 (2002), 91-104.  doi: 10.1002/oca.704.  Google Scholar

[26]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.  Google Scholar

[27]

T. L. Vincent, W. J. Grantham and W. Stadler, Optimality in Parametric Systems, American Society of Mechanical Engineers Digital Collection, 1983. Google Scholar

[28]

L. WangJ. YuanC. Wu and X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.  Google Scholar

[29]

K. H. WongL. S. Jennings and F. Benyah, The control parametrization enhancing transform for constrained time–delayed optimal control problems, ANZIAM Journal, 43 (2001), 154-185.   Google Scholar

[30]

D. WuY. Bai and F. Xie, Time-scaling transformation for optimal control problem with time-varying delay, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1683-1695.  doi: 10.3934/dcdss.2020098.  Google Scholar

[31]

D. WuY. Bai and C. Yu, A new computational approach for optimal control problems with multiple time-delay, Automatica, 101 (2019), 388-395.  doi: 10.1016/j.automatica.2018.12.036.  Google Scholar

[32]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[33]

C. YuB. LiR. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.  doi: 10.1007/s10898-012-9858-7.  Google Scholar

[34]

C. YuQ. LinR. LoxtonK. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.  doi: 10.1007/s10957-015-0783-z.  Google Scholar

[35]

N. ZhangC. -J. Yu and F. -S. Xie, The time-scaling transformation technique for optimal control problems with time-varying time-delay switched systems, Journal of the Operations Research Society of China, 8 (2020), 581-600.  doi: 10.1007/s40305-020-00299-5.  Google Scholar

show all references

References:
[1]

J. T. Betts, S. L. Campbell and K. C. Thompson, Optimal control software for constrained nonlinear systems with delays, in IEEE International Symposium on Computer-Aided Control System Design (CACSD), IEEE, 2011,444–449. Google Scholar

[2]

Q. ChaiR. LoxtonK. L. Teo and C. Yang, A class of optimal state-delay control problems, Nonlinear Analysis: Real World Applications, 14 (2013), 1536-1550.  doi: 10.1016/j.nonrwa.2012.10.017.  Google Scholar

[3]

Q. ChaiR. LoxtonK. L. Teo and C. Yang, A unified parameter identification method for nonlinear time-delay systems, Journal of Industrial and Management Optimization, 9 (2013), 471-486.  doi: 10.3934/jimo.2013.9.471.  Google Scholar

[4]

Q. Q. ChaiC. H. YangK. L. Teo and W. H. Gui, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution, Control Engineering Practice, 20 (2012), 618-628.  doi: 10.1016/j.conengprac.2012.03.001.  Google Scholar

[5]

L. Denis-VidalC. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model, IEEE Transactions on Automatic Control, 51 (2006), 154-158.  doi: 10.1109/TAC.2005.861700.  Google Scholar

[6]

V. DeshmukhH. Ma and E. A. Butcher, Optimal control of parametrically excited linear delay differential systems via chebyshev polynomials, Optimal Control Applications and Methods, 27 (2006), 123-136.  doi: 10.1002/oca.769.  Google Scholar

[7]

C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18.  doi: 10.1016/0005-1098(88)90003-9.  Google Scholar

[8]

L. GöllmannD. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control–state constraints, Optimal Control Applications and Methods, 30 (2009), 341-365.  doi: 10.1002/oca.843.  Google Scholar

[9]

L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and Management Optimization, 10 (2014), 413-441.  doi: 10.3934/jimo.2014.10.413.  Google Scholar

[10]

K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313.  doi: 10.1007/BF02191855.  Google Scholar

[11]

C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control, Journal of Optimization Theory and Applications, 117 (2003), 69-92.  doi: 10.1023/A:1023600422807.  Google Scholar

[12]

H. W. J. LeeK. L. TeoV. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.   Google Scholar

[13]

H. W. J. LeeK. L. TeoV. Rehbock and L. S. Jennings, Control parametrization enhancing technique for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.  doi: 10.1016/S0005-1098(99)00050-3.  Google Scholar

[14]

B. LiC. J. YuK. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.  doi: 10.1007/s10957-011-9904-5.  Google Scholar

[15]

L. LiC. YuN. ZhangY. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.  Google Scholar

[16]

Q. LinR. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar

[17]

Q. LinR. LoxtonK. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems B, 18 (2011), 59-76.   Google Scholar

[18]

R. C. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[19]

M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems: Analysis, Optimization and Applications, North-Holland Systems and Control Series, 9. North-Holland Publishing Co., Amsterdam, 1987.  Google Scholar

[20]

H. R. Marzban and S. M. Hoseini, An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays, Optimal Control Applications and Methods, 37 (2016), 682-707.  doi: 10.1002/oca.2187.  Google Scholar

[21]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[22]

A. NasirE. M. Atkins and I. Kolmanovsky, Robust science-optimal spacecraft control for circular orbit missions, IEEE Transactions on Systems Man and Cybernetics Systems, 50 (2020), 923-934.  doi: 10.1109/TSMC.2017.2767077.  Google Scholar

[23]

J. Nocedal and S. J. Wright, Numerical Optimization, 2$^nd$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.  Google Scholar

[24]

D. Stefanatos, Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49 (2013), 3079-3083.  doi: 10.1016/j.automatica.2013.07.020.  Google Scholar

[25]

R. F. StengelR. GhigliazzaN. Kulkarni and O. Laplace, Optimal control of innate immune response, Optimal Control Applications and Methods, 23 (2002), 91-104.  doi: 10.1002/oca.704.  Google Scholar

[26]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.  Google Scholar

[27]

T. L. Vincent, W. J. Grantham and W. Stadler, Optimality in Parametric Systems, American Society of Mechanical Engineers Digital Collection, 1983. Google Scholar

[28]

L. WangJ. YuanC. Wu and X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.  Google Scholar

[29]

K. H. WongL. S. Jennings and F. Benyah, The control parametrization enhancing transform for constrained time–delayed optimal control problems, ANZIAM Journal, 43 (2001), 154-185.   Google Scholar

[30]

D. WuY. Bai and F. Xie, Time-scaling transformation for optimal control problem with time-varying delay, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1683-1695.  doi: 10.3934/dcdss.2020098.  Google Scholar

[31]

D. WuY. Bai and C. Yu, A new computational approach for optimal control problems with multiple time-delay, Automatica, 101 (2019), 388-395.  doi: 10.1016/j.automatica.2018.12.036.  Google Scholar

[32]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[33]

C. YuB. LiR. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.  doi: 10.1007/s10898-012-9858-7.  Google Scholar

[34]

C. YuQ. LinR. LoxtonK. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.  doi: 10.1007/s10957-015-0783-z.  Google Scholar

[35]

N. ZhangC. -J. Yu and F. -S. Xie, The time-scaling transformation technique for optimal control problems with time-varying time-delay switched systems, Journal of the Operations Research Society of China, 8 (2020), 581-600.  doi: 10.1007/s40305-020-00299-5.  Google Scholar

Table 3.  Experimental results of co-state method and variational method
Problem numbers of partitions co-state method CPU time(s) variational method CPU time(s) optimal cost
Prob 1 p=4 9.62 11.98 1.7500
p=6 18.04 29.49 1.7407
p=8 26.14 31.73 1.7405
p=12 61.41 117.46 1.7403
Prob 2 p=5 10.2 147.23 2.4046
Prob 3 p=10 183 2702 2.0356
Prob 4 p=1 1.180 1.729 0.0218
p=3 4.485 22.39 0.0176
p=6 12.92 329.01 0.0142
Prob 5 p=5 8.72 51.56 2.1502
Problem numbers of partitions co-state method CPU time(s) variational method CPU time(s) optimal cost
Prob 1 p=4 9.62 11.98 1.7500
p=6 18.04 29.49 1.7407
p=8 26.14 31.73 1.7405
p=12 61.41 117.46 1.7403
Prob 2 p=5 10.2 147.23 2.4046
Prob 3 p=10 183 2702 2.0356
Prob 4 p=1 1.180 1.729 0.0218
p=3 4.485 22.39 0.0176
p=6 12.92 329.01 0.0142
Prob 5 p=5 8.72 51.56 2.1502
Table 1.  Parameters in Problem 2
a b c $ t_f $ Q R S
0.2 0.5 0.2 1.5 $ I_{2\times2} $ $ I_{2\times2} $ $ 10^4I_{2\times2} $
a b c $ t_f $ Q R S
0.2 0.5 0.2 1.5 $ I_{2\times2} $ $ I_{2\times2} $ $ 10^4I_{2\times2} $
Table 2.  Parameters in Problemk 5
a b c h $ t_f $ Q R S
0.2 0.5 0.2 1 2 $ I_{2\times2} $ $ I_{2\times2} $ $ 10^4I_{2\times2} $
a b c h $ t_f $ Q R S
0.2 0.5 0.2 1 2 $ I_{2\times2} $ $ I_{2\times2} $ $ 10^4I_{2\times2} $
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[3]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[4]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[5]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[6]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[7]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[8]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[9]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[10]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[11]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[14]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[17]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[18]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]