doi: 10.3934/jimo.2021079
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case

1. 

School of Automation, Southeast University, Nanjing, Jiangsu 210096, China

2. 

Industrial Systems Optimization Laboratory, University of Technology of Troyes, Troyes 10004, France

* Corresponding author: Zheng Wang

Received  August 2020 Revised  February 2021 Early access April 2021

Fund Project: This work is supported by National Natural Science Foundation of China under grant 61673109

In the real world, the demand cannot be depicted exactly because of customer behavior cannot be forecasted without error. In this paper, we study the effect of the error of the estimated price-demand parameters by analyzing the sensitivity of the optimal joint pricing and ordering policy on the price-demand parameters based on a periodic-review, multi-period and lost sale inventory model for perishable products with constant quantity decay rate and price-sensitive demand. Firstly, we formulate the joint pricing and inventory control problem and find the optimal ordering quantity and the optimal price for deterministic price-demand function. The optimal solutions show that the retailer tends to set a lower price in early periods of each ordering cycle in order to reduce the inventory holding costs. Furthermore, the sensitivity of the optimal joint pricing and inventory control system with respect to the price-demand parameters is examined analytically and evaluated numerically. The sensitivity analysis reveals that compared to the optimal ordering quantity, the optimal prices are less sensitive in the demand-price parameters. Finally, according to the findings of the sensitivity analysis, a heuristic method of regulating the estimated demand-price parameters is employed to improve the average profit. 185 words.

Citation: Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021079
References:
[1]

E. Borgonovo and L. Peccati, Global sensitivity analysis in inventory management, International Journal of Production Economics, 108 (2007), 302-313.   Google Scholar

[2]

A. N. Burnetas and C. E. Smith, Adaptive ordering and pricing for perishable products, Oper. Res., 48 (2000), 436-443.  doi: 10.1287/opre.48.3.436.12437.  Google Scholar

[3]

L. X. ChenX. ChenM. F. Keblis and G. Li, Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent, time-varying and price-dependent, Computers & Industrial Engineering, 135 (2019), 1294-1299.  doi: 10.1016/j.cie.2018.06.005.  Google Scholar

[4]

X. ChenZ. Pang and L. Pan, Coordinating inventory control and pricing strategies for perishable products, Oper. Res., 62 (2014), 284-300.  doi: 10.1287/opre.2014.1261.  Google Scholar

[5]

X. Chen and D. Simchi-Levi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the finite horizon case, Oper. Res., 52 (2004), 887-896.  doi: 10.1287/opre.1040.0127.  Google Scholar

[6]

E. P. ChewC. LeeR. J. LiuK. S. Hong and A. M. Zhang, Optimal dynamic pricing and ordering decisions for perishable product, International Journal of Production Research, 157 (2014), 39-48.   Google Scholar

[7]

L. FengJ. Zhang and W. Tang, Dynamic joint pricing and production policy for perishable products, Int. Trans. Oper. Res., 25 (2018), 2031-2051.  doi: 10.1111/itor.12239.  Google Scholar

[8]

A. Gutierrez-AlcobaR. RossiB. Martin-Barragan and E. M. T. Hendrix, A simple heuristic for perishable item inventory control under non-stationary stochastic demand, International Journal of Production Research, 55 (2017), 1885-1897.  doi: 10.1080/00207543.2016.1193248.  Google Scholar

[9]

Y. HeS. Y. Wang and K. K. Lai, An optimal production-inventory model for deteriorating items with multiple-market demand, European Journal of Operational Research, 203 (2010), 593-600.   Google Scholar

[10]

A. Herbon and E. Khmelnitsky, Optimal dynamic pricing and ordering of a perishable product under additive effects of price and time on demand, European J. Oper. Res., 260 (2017), 546-556.  doi: 10.1016/j.ejor.2016.12.033.  Google Scholar

[11]

P. Ignaciuk, LQ optimal and robust control of perishable inventory systems with multiple supply options, IEEE Trans. Automat. Control, 58 (2013), 2108-2113.  doi: 10.1109/TAC.2013.2246093.  Google Scholar

[12]

P. Ignaciuk and A. Bartoszewicz, Linear-quadratic optimal control of periodic-review perishable inventory systems, IEEE Transactions on Control Systems Technology, 20 (2012), 1400-1407.  doi: 10.1109/TCST.2011.2161086.  Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, LQ optimal sliding-mode supply policy for periodic-review perishable inventory systems, J. Franklin Inst., 349 (2012), 1561-1582.  doi: 10.1016/j.jfranklin.2011.04.003.  Google Scholar

[14]

O. Kaya and A. L. Polat, Coordinated pricing and inventory decisions for perishable products, OR Spectrum, 39 (2017), 589-606.  doi: 10.1007/s00291-016-0467-6.  Google Scholar

[15]

D.-H. KimY. Song and H. Xu, A fast estimation procedure for discrete choice random coefficients demand model, Applied Economics, 49 (2017), 5849-5855.  doi: 10.1080/00036846.2017.1349289.  Google Scholar

[16]

S. LiJ. Zhang and W. Tang, Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products, International Journal of Production Research, 53 (2015), 2937-2950.  doi: 10.1080/00207543.2014.961206.  Google Scholar

[17]

Z. Lian and L. Liu, A discrete-time model for perishable inventory systems, Ann. Oper. Res., 87 (1999), 103-116.  doi: 10.1023/A:1018960314433.  Google Scholar

[18]

J. LuJ. ZhangX. Jia and G. Wei, Optimal dynamic pricing, preservation technology investment and periodic ordering policies for agricultural products, RAIRO Oper. Res., 53 (2019), 731-747.  doi: 10.1051/ro/2018040.  Google Scholar

[19]

S. Nahmias, Optimal ordering policies for perishable inventory-Ⅱ, Operations Research, 23 (1975), 735-749.  doi: 10.1287/opre.23.4.735.  Google Scholar

[20]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 47 (1999), 183-194.  doi: 10.1287/opre.47.2.183.  Google Scholar

[21]

Y. QinJ. Wang and C. Wei, Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, International Journal of Production Economics, 152 (2014), 42-48.  doi: 10.1016/j.ijpe.2014.01.005.  Google Scholar

[22]

B. Rabta, Sensitivity analysis in inventory models by means of ergodicity coefficients, International Journal of Production Economics, 188 (2017), 63-71.  doi: 10.1016/j.ijpe.2017.03.014.  Google Scholar

[23]

T. M. Whitin, Inventory control and price theory, Management Science, 2 (1955), 1-104.  doi: 10.1287/mnsc.2.1.61.  Google Scholar

[24]

D. Yao, Joint pricing and inventory control for a stochastic inventory system with Brownian motion demand, IISE Transactions, 49 (2017), 1101-1111.  doi: 10.1080/24725854.2017.1355126.  Google Scholar

[25]

P. H. Zipkin, Foundations of inventory management, 1$^{st}$ edition, McGraw-Hill, New York, (2000), 82–93. Google Scholar

show all references

References:
[1]

E. Borgonovo and L. Peccati, Global sensitivity analysis in inventory management, International Journal of Production Economics, 108 (2007), 302-313.   Google Scholar

[2]

A. N. Burnetas and C. E. Smith, Adaptive ordering and pricing for perishable products, Oper. Res., 48 (2000), 436-443.  doi: 10.1287/opre.48.3.436.12437.  Google Scholar

[3]

L. X. ChenX. ChenM. F. Keblis and G. Li, Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent, time-varying and price-dependent, Computers & Industrial Engineering, 135 (2019), 1294-1299.  doi: 10.1016/j.cie.2018.06.005.  Google Scholar

[4]

X. ChenZ. Pang and L. Pan, Coordinating inventory control and pricing strategies for perishable products, Oper. Res., 62 (2014), 284-300.  doi: 10.1287/opre.2014.1261.  Google Scholar

[5]

X. Chen and D. Simchi-Levi, Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the finite horizon case, Oper. Res., 52 (2004), 887-896.  doi: 10.1287/opre.1040.0127.  Google Scholar

[6]

E. P. ChewC. LeeR. J. LiuK. S. Hong and A. M. Zhang, Optimal dynamic pricing and ordering decisions for perishable product, International Journal of Production Research, 157 (2014), 39-48.   Google Scholar

[7]

L. FengJ. Zhang and W. Tang, Dynamic joint pricing and production policy for perishable products, Int. Trans. Oper. Res., 25 (2018), 2031-2051.  doi: 10.1111/itor.12239.  Google Scholar

[8]

A. Gutierrez-AlcobaR. RossiB. Martin-Barragan and E. M. T. Hendrix, A simple heuristic for perishable item inventory control under non-stationary stochastic demand, International Journal of Production Research, 55 (2017), 1885-1897.  doi: 10.1080/00207543.2016.1193248.  Google Scholar

[9]

Y. HeS. Y. Wang and K. K. Lai, An optimal production-inventory model for deteriorating items with multiple-market demand, European Journal of Operational Research, 203 (2010), 593-600.   Google Scholar

[10]

A. Herbon and E. Khmelnitsky, Optimal dynamic pricing and ordering of a perishable product under additive effects of price and time on demand, European J. Oper. Res., 260 (2017), 546-556.  doi: 10.1016/j.ejor.2016.12.033.  Google Scholar

[11]

P. Ignaciuk, LQ optimal and robust control of perishable inventory systems with multiple supply options, IEEE Trans. Automat. Control, 58 (2013), 2108-2113.  doi: 10.1109/TAC.2013.2246093.  Google Scholar

[12]

P. Ignaciuk and A. Bartoszewicz, Linear-quadratic optimal control of periodic-review perishable inventory systems, IEEE Transactions on Control Systems Technology, 20 (2012), 1400-1407.  doi: 10.1109/TCST.2011.2161086.  Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, LQ optimal sliding-mode supply policy for periodic-review perishable inventory systems, J. Franklin Inst., 349 (2012), 1561-1582.  doi: 10.1016/j.jfranklin.2011.04.003.  Google Scholar

[14]

O. Kaya and A. L. Polat, Coordinated pricing and inventory decisions for perishable products, OR Spectrum, 39 (2017), 589-606.  doi: 10.1007/s00291-016-0467-6.  Google Scholar

[15]

D.-H. KimY. Song and H. Xu, A fast estimation procedure for discrete choice random coefficients demand model, Applied Economics, 49 (2017), 5849-5855.  doi: 10.1080/00036846.2017.1349289.  Google Scholar

[16]

S. LiJ. Zhang and W. Tang, Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products, International Journal of Production Research, 53 (2015), 2937-2950.  doi: 10.1080/00207543.2014.961206.  Google Scholar

[17]

Z. Lian and L. Liu, A discrete-time model for perishable inventory systems, Ann. Oper. Res., 87 (1999), 103-116.  doi: 10.1023/A:1018960314433.  Google Scholar

[18]

J. LuJ. ZhangX. Jia and G. Wei, Optimal dynamic pricing, preservation technology investment and periodic ordering policies for agricultural products, RAIRO Oper. Res., 53 (2019), 731-747.  doi: 10.1051/ro/2018040.  Google Scholar

[19]

S. Nahmias, Optimal ordering policies for perishable inventory-Ⅱ, Operations Research, 23 (1975), 735-749.  doi: 10.1287/opre.23.4.735.  Google Scholar

[20]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 47 (1999), 183-194.  doi: 10.1287/opre.47.2.183.  Google Scholar

[21]

Y. QinJ. Wang and C. Wei, Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, International Journal of Production Economics, 152 (2014), 42-48.  doi: 10.1016/j.ijpe.2014.01.005.  Google Scholar

[22]

B. Rabta, Sensitivity analysis in inventory models by means of ergodicity coefficients, International Journal of Production Economics, 188 (2017), 63-71.  doi: 10.1016/j.ijpe.2017.03.014.  Google Scholar

[23]

T. M. Whitin, Inventory control and price theory, Management Science, 2 (1955), 1-104.  doi: 10.1287/mnsc.2.1.61.  Google Scholar

[24]

D. Yao, Joint pricing and inventory control for a stochastic inventory system with Brownian motion demand, IISE Transactions, 49 (2017), 1101-1111.  doi: 10.1080/24725854.2017.1355126.  Google Scholar

[25]

P. H. Zipkin, Foundations of inventory management, 1$^{st}$ edition, McGraw-Hill, New York, (2000), 82–93. Google Scholar

Figure 1.  Proof of the zero-inventory property
Figure 2.  Repetitive ordering cycles
Figure 3.  Change of the optimal ordering cycle
Figure 4.  Sensitivity coefficient of the optimal ordering quantity
Figure 5.  Sensitivity coefficient of the optimal price
Figure 6.  Change of the optimal ordering cycle
Figure 7.  Sensitivity coefficient of the optimal ordering quantity
Figure 8.  Sensitivity coefficient of the optimal price
Figure 9.  Performance of the heuristic regulation method on $ s $
Figure 10.  Performance of the heuristic regulating method on $ \alpha $
Table 1.  Sensitivity analysis on perishability problem
Paper optimization Backlog or lost sale or no shortage Sensitivity analysis objective
Qin et al.[21] Price, order No shortage Decision variables on price-demand parameter and on deterioration function
Lu et al.[18] Price, order, quality keeping No shortage Decision variables on all the system parameters
Chen et al.[3] Price, order backlog Decision variables on decay rate, demand change, holding cost
Paper optimization Backlog or lost sale or no shortage Sensitivity analysis objective
Qin et al.[21] Price, order No shortage Decision variables on price-demand parameter and on deterioration function
Lu et al.[18] Price, order, quality keeping No shortage Decision variables on all the system parameters
Chen et al.[3] Price, order backlog Decision variables on decay rate, demand change, holding cost
Table 2.  Sensitivity analysis on perishability problem
$ \Delta s $ $ \Delta \alpha $ $ TP_{{\rm{new}}}^* $
$ \Delta s >0 $ $ \Delta \alpha=0 $ $ TP_{{\rm{new}}}^* \le T{P^*} $
$ \Delta s <0 $ $ \Delta \alpha=0 $ $ TP_{{\rm{new}}}^* \ge T{P^*} $
$ \Delta s=0 $ $ \Delta \alpha >0 $ $ TP_{{\rm{new}}}^* \ge T{P^*} $
$ \Delta s=0 $ $ \Delta \alpha <0 $ $ TP_{{\rm{new}}}^* \le T{P^*} $
$ \Delta s $ $ \Delta \alpha $ $ TP_{{\rm{new}}}^* $
$ \Delta s >0 $ $ \Delta \alpha=0 $ $ TP_{{\rm{new}}}^* \le T{P^*} $
$ \Delta s <0 $ $ \Delta \alpha=0 $ $ TP_{{\rm{new}}}^* \ge T{P^*} $
$ \Delta s=0 $ $ \Delta \alpha >0 $ $ TP_{{\rm{new}}}^* \ge T{P^*} $
$ \Delta s=0 $ $ \Delta \alpha <0 $ $ TP_{{\rm{new}}}^* \le T{P^*} $
[1]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[2]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[3]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[4]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[5]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[6]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[7]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1585-1612. doi: 10.3934/jimo.2019019

[8]

Kebing Chen, Haijie Zhou, Dong Lei. Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3131-3163. doi: 10.3934/jimo.2020111

[9]

Onur Kaya, Halit Bayer. Pricing and lot-sizing decisions for perishable products when demand changes by freshness. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3113-3129. doi: 10.3934/jimo.2020110

[10]

Bing-Bing Cao, Zhi-Ping Fan, Tian-Hui You. The optimal pricing and ordering policy for temperature sensitive products considering the effects of temperature on demand. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1153-1184. doi: 10.3934/jimo.2018090

[11]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[12]

Guodong Yi, Xiaohong Chen, Chunqiao Tan. Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1579-1597. doi: 10.3934/jimo.2018112

[13]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial & Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[14]

Junling Han, Nengmin Wang, Zhengwen He, Bin Jiang. Optimal return and rebate mechanism based on demand sensitivity to reference price. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021087

[15]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097

[16]

Lou Caccetta, Elham Mardaneh. Joint pricing and production planning for fixed priced multiple products with backorders. Journal of Industrial & Management Optimization, 2010, 6 (1) : 123-147. doi: 10.3934/jimo.2010.6.123

[17]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[18]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[19]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[20]

Ming-Jong Yao, Yu-Chun Wang. Theoretical analysis and a search procedure for the joint replenishment problem with deteriorating products. Journal of Industrial & Management Optimization, 2005, 1 (3) : 359-375. doi: 10.3934/jimo.2005.1.359

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]