[1]
|
X.-L. Bai, Z.-H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
doi: 10.1007/s10957-016-0903-4.
|
[2]
|
J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, Berlin, 2006.
doi: 10.1007/978-0-387-31256-9.
|
[3]
|
M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1.
|
[4]
|
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
|
[5]
|
S. Du and L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 73 (2019), 789-800.
doi: 10.1007/s10898-018-00731-4.
|
[6]
|
F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
|
[7]
|
H.-B. Guan and D.-H. Li, Linearized methods for tensor complementarity problems, J. Optim. Theory Appl., 184 (2020), 972-987.
doi: 10.1007/s10957-019-01627-3.
|
[8]
|
Q. Guo, M.-M. Zheng and Z.-H. Huang, Properties of $S$-tensors, Linear and Multilinear Algebra, 67 (2019), 685-696.
doi: 10.1080/03081087.2018.1430737.
|
[9]
|
L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180 (2019), 949-963.
doi: 10.1007/s10957-018-1422-2.
|
[10]
|
Z. H. Huang and L. Qi, Formulating an $n$-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7.
|
[11]
|
Z.-H. Huang and L. Qi, Tensor complementarity problems–Part Ⅰ: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z.
|
[12]
|
Z.-H. Huang and L. Qi, Tensor complementarity problems–Part Ⅲ: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.
doi: 10.1007/s10957-019-01573-0.
|
[13]
|
M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Springer, Berlin, 1991.
doi: 10.1007/3-540-54509-3.
|
[14]
|
M. Kojima, T. Noma and A. Yoshise, Global convergence in infeasible-interior-point algorithms, Math. Programming, 65 (1994), 43-72.
doi: 10.1007/BF01581689.
|
[15]
|
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X.
|
[16]
|
D.-H. Li, C.-D. Chen and H.-B. Guan, A lower dimensional linear equation approach to the $M$-tensor complementarity problem, Calcolo, 58 (2021), Paper No. 5, 21 pp.
doi: 10.1007/s10092-021-00397-7.
|
[17]
|
D. Liu, W. Li and S.-W. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear and Multilinear Algebra, 66 (2018), 1726-1749.
doi: 10.1080/03081087.2017.1369929.
|
[18]
|
Z. Luo, L. Qi and N. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optim. Lett., 11 (2017), 471-482.
doi: 10.1007/s11590-016-1013-9.
|
[19]
|
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.
|
[20]
|
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and their Applications, Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6.
|
[21]
|
L. Qi and Z.-H. Huang, Tensor complementarity problems–Part Ⅱ: Solution methods, J. Optim. Theory Appl., 183 (2019), 365-385.
doi: 10.1007/s10957-019-01568-x.
|
[22]
|
Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5.
|
[23]
|
Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 3 (2017), 308-323.
|
[24]
|
Y. Song and G. Yu, Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170 (2016), 85-96.
doi: 10.1007/s10957-016-0907-0.
|
[25]
|
D. Sun and L. Qi, On NCP-functions, Comput. Optim. Appl., 13 (1999), 201-220.
doi: 10.1023/A:1008669226453.
|
[26]
|
Y. Wang, Z.-H. Huang and L. Qi, Global uniqueness and solvability of tensor variational inequalities, J. Optim. Theory Appl., 177 (2018), 137-152.
doi: 10.1007/s10957-018-1233-5.
|
[27]
|
S.-L. Xie, D.-H. Li and H.-R. Xu, An iterative method for finding the least solution to the tensor complementarity problem, J. Optim. Theory Appl., 175 (2017), 119-136.
doi: 10.1007/s10957-017-1157-5.
|
[28]
|
K. Zhang, H. Chen and P. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.
doi: 10.3934/jimo.2018049.
|