doi: 10.3934/jimo.2021085

The loss-averse newsvendor problem with quantity-oriented reference point under CVaR criterion

1. 

Department of Basic Science, Wuhan Donghu University, Wuhan 430212, China

2. 

Department of Automation, Tsinghua University, Beijing 100084, China

3. 

Financial Department, Wuhan Business University, Wuhan 430056, China

4. 

Department of Finance and Audit, Army Logistics University, Chongqing 401311, China

5. 

Department of Basic Science, Army Logistics University, Chongqing 401311, China

*Corresponding author: Ying Qiao

Received  December 2019 Revised  December 2020 Published  April 2021

Fund Project: The paper is supported by National Key Research and Development Project of China (No. 2018YFB1702903), Research Project of Hubei Provincial Department of Education (No. B2020240), and Youth Foundation of Wuhan Donghu University (No. 2020dhzk005)

This paper studies a single-period inventory problem with quantity-oriented reference point, where the newsvendor has loss-averse preferences and conditional value-at-risk (CVaR) measure is introduced to hedge against his risk. It is shown there exists a unique optimal order quantity maximizing the CVaR of utility. Moreover, it is decreasing in loss aversion level, confidence level and target unit profit, respectively. Then we establish the sufficient conditions under which the newsvendor's optimal order quantity may be larger than, equal to or less than the classical newsvendor solution. In particular, when the target unit profit is a convex combination of the maximum and minimum, the optimal order quantity is independent of price and cost parameters. Numerical experiments are conducted to illustrate our results and present some managerial insights.

Citation: Wei Liu, Shiji Song, Ying Qiao, Han Zhao, Huachang Wang. The loss-averse newsvendor problem with quantity-oriented reference point under CVaR criterion. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021085
References:
[1]

T. BaiM. Wu and S. X. Zhu, Pricing and ordering by a loss averse newsvendor with reference dependence, Transportation Research Part E: Logistics and Transportation Review, 131 (2019), 343-365.  doi: 10.1016/j.tre.2019.10.003.  Google Scholar

[2]

A. O. Brown and C. S. Tang, The impact of alternative performance measures on single-period inventory policy, J. Ind. Manag. Optim., 2 (2006), 297-318.  doi: 10.3934/jimo.2006.2.297.  Google Scholar

[3]

F. T. Chan and X. Xu, The loss-averse retailer's order decisions under risk management, Mathematics, 7 (2019), 595. doi: 10.3390/math7070595.  Google Scholar

[4]

Y. ChenM. Xu and Z. G. Zhang, A risk-averse newsvendor model under the CVaR criterion, Operations Research, 57 (2009), 1040-1044.   Google Scholar

[5]

T. FengL. R. Keller and X. Zheng, Decision making in the newsvendor problem: A cross-national laboratory study, Omega, 39 (2011), 41-50.  doi: 10.1016/j.omega.2010.02.003.  Google Scholar

[6]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

C. Fulga, Portfolio optimization under loss aversion, European J. Oper. Res., 251 (2016), 310-322.  doi: 10.1016/j.ejor.2015.11.038.  Google Scholar

[8]

C. Fulga, Portfolio optimization with disutility-based risk measure, European J. Oper. Res., 251 (2016), 541-553.  doi: 10.1016/j.ejor.2015.11.012.  Google Scholar

[9]

A. Furnham and H. C. Boo, A literature review of the anchoring effect, The Journal of Socio-Economics, 40 (2011), 35-42.  doi: 10.1016/j.socec.2010.10.008.  Google Scholar

[10]

J. Guo and X. D. He, Equilibrium asset pricing with Epstein-Zin and loss-averse investors, J. Econom. Dynam. Control, 76 (2017), 86-108.  doi: 10.1016/j.jedc.2016.12.008.  Google Scholar

[11]

F. Herweg, The expectation-based loss-averse newsvendor, Econom. Lett., 120 (2013), 429-432.  doi: 10.1016/j.econlet.2013.05.035.  Google Scholar

[12]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-291.  doi: 10.2307/1914185.  Google Scholar

[13]

M. Khouja, The single-period (news-vendor) problem: Literature review and suggestions for future research, Omega, 27 (1999), 537-553.  doi: 10.1016/S0305-0483(99)00017-1.  Google Scholar

[14]

B. LiP. HouP. Chen and Q. Li, Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer, International Journal of Production Economics, 178 (2016), 154-168.   Google Scholar

[15]

W. LiuS. SongB. Li and C. Wu, A periodic review inventory model with loss-averse retailer, random supply capacity and demand, International Journal of Production Research, 53 (2015), 3623-3634.  doi: 10.1080/00207543.2014.985391.  Google Scholar

[16]

W. LiuS. SongY. Qiao and H. Zhao, The loss-averse newsvendor problem with random supply capacity, J. Ind. Manag. Optim., 13 (2017), 1417-1429.  doi: 10.3934/jimo.2016080.  Google Scholar

[17]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.  doi: 10.1016/j.ijpe.2012.08.017.  Google Scholar

[18]

W. LiuS. Song and C. Wu, The loss-averse newsvendor problem with random yield, Transactions of the Institute of Measurement and Control, 36 (2014), 312-320.   Google Scholar

[19]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2015), 3009-3012.  doi: 10.1287/mnsc.2014.2050.  Google Scholar

[20]

L. MaW. XueY. Zhao and Q. Zeng, Loss-averse newsvendor problem with supply risk, Journal of the Operational Research Society, 67 (2016), 214-228.   Google Scholar

[21]

L. MaY. ZhaoW. XueT. C. E. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.  doi: 10.1016/j.ijpe.2012.07.012.  Google Scholar

[22]

P. MandalR. Kaul and T. Jain, Stocking and pricing decisions under endogenous demand and reference point effects, European J. Oper. Res., 264 (2018), 181-199.  doi: 10.1016/j.ejor.2017.05.053.  Google Scholar

[23]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European J. Oper. Res., 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar

[24]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.   Google Scholar

[25]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of banking & finance, 26 (2002), 1443-1471.   Google Scholar

[26]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[27]

J. Sun and X. Xu, Coping with loss aversion in the newsvendor model, Discrete Dyn. Nat. Soc., (2015), Art. ID 851586, 11 pp. doi: 10.1155/2015/851586.  Google Scholar

[28]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertain, Journal of Risk and Uncertainty, 5 (1992), 297-323.   Google Scholar

[29]

B. Vipin and R. K. Amit, Loss aversion and rationality in the newsvendor problem under recourse option, European J. Oper. Res., 261 (2017), 563-571.  doi: 10.1016/j.ejor.2017.02.012.  Google Scholar

[30]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.  doi: 10.1016/j.ijpe.2009.12.007.  Google Scholar

[31]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

[32]

R. Wang and J. Wang, Procurement strategies with quantity-oriented reference point and loss aversion, Omega, 80 (2018), 1-11.  doi: 10.1016/j.omega.2017.08.007.  Google Scholar

[33]

M. WuT. Bai and S. X. Zhu, A loss averse competitive newsvendor problem with anchoring, Omega, 81 (2018), 99-111.  doi: 10.1016/j.omega.2017.10.003.  Google Scholar

[34]

M. WuS. X. Zhu and R. H. Teunter, A risk-averse competitive newsvendor problem under the CVaR criterion, International Journal of Production Economics, 156 (2014), 13-23.  doi: 10.1016/j.ijpe.2014.05.009.  Google Scholar

[35]

X. XuF. T. S. Chan and C. K. Chan, Optimal option purchase decision of a loss-averse retailer under emergent replenishment, International Journal of Production Research, 57 (2019), 4594-4620.  doi: 10.1080/00207543.2019.1579935.  Google Scholar

[36]

X. XuC. K. Chan and A. Langevin, Coping with risk management and fill rate in the loss-averse newsvendor model, International Journal of Production Economics, 195 (2018), 296-310.  doi: 10.1016/j.ijpe.2017.10.024.  Google Scholar

[37]

X. XuZ. MengR. ShenM. Jiang and P. Ji, Optimal decisions for the loss-averse newsvendor problem under CVaR, International Journal of Production Economics, 164 (2015), 146-159.   Google Scholar

[38]

X. XuH. WangC. Dang and P. Ji, The loss-averse newsvendor model with backordering, International Journal of Production Economics, 188 (2017), 1-10.  doi: 10.1016/j.ijpe.2017.03.005.  Google Scholar

[39]

H. YuJ. Zhai and G.-Y. Chen, Robust optimization for the loss-averse newsvendor problem, J. Optim. Theory Appl., 171 (2016), 1008-1032.  doi: 10.1007/s10957-016-0870-9.  Google Scholar

[40]

X.-B. Zhao and W. Geng, A note on "Prospect theory and the newsvendor problem", J. Oper. Res. Soc. China, 3 (2015), 89-94.  doi: 10.1007/s40305-015-0072-4.  Google Scholar

show all references

References:
[1]

T. BaiM. Wu and S. X. Zhu, Pricing and ordering by a loss averse newsvendor with reference dependence, Transportation Research Part E: Logistics and Transportation Review, 131 (2019), 343-365.  doi: 10.1016/j.tre.2019.10.003.  Google Scholar

[2]

A. O. Brown and C. S. Tang, The impact of alternative performance measures on single-period inventory policy, J. Ind. Manag. Optim., 2 (2006), 297-318.  doi: 10.3934/jimo.2006.2.297.  Google Scholar

[3]

F. T. Chan and X. Xu, The loss-averse retailer's order decisions under risk management, Mathematics, 7 (2019), 595. doi: 10.3390/math7070595.  Google Scholar

[4]

Y. ChenM. Xu and Z. G. Zhang, A risk-averse newsvendor model under the CVaR criterion, Operations Research, 57 (2009), 1040-1044.   Google Scholar

[5]

T. FengL. R. Keller and X. Zheng, Decision making in the newsvendor problem: A cross-national laboratory study, Omega, 39 (2011), 41-50.  doi: 10.1016/j.omega.2010.02.003.  Google Scholar

[6]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

C. Fulga, Portfolio optimization under loss aversion, European J. Oper. Res., 251 (2016), 310-322.  doi: 10.1016/j.ejor.2015.11.038.  Google Scholar

[8]

C. Fulga, Portfolio optimization with disutility-based risk measure, European J. Oper. Res., 251 (2016), 541-553.  doi: 10.1016/j.ejor.2015.11.012.  Google Scholar

[9]

A. Furnham and H. C. Boo, A literature review of the anchoring effect, The Journal of Socio-Economics, 40 (2011), 35-42.  doi: 10.1016/j.socec.2010.10.008.  Google Scholar

[10]

J. Guo and X. D. He, Equilibrium asset pricing with Epstein-Zin and loss-averse investors, J. Econom. Dynam. Control, 76 (2017), 86-108.  doi: 10.1016/j.jedc.2016.12.008.  Google Scholar

[11]

F. Herweg, The expectation-based loss-averse newsvendor, Econom. Lett., 120 (2013), 429-432.  doi: 10.1016/j.econlet.2013.05.035.  Google Scholar

[12]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-291.  doi: 10.2307/1914185.  Google Scholar

[13]

M. Khouja, The single-period (news-vendor) problem: Literature review and suggestions for future research, Omega, 27 (1999), 537-553.  doi: 10.1016/S0305-0483(99)00017-1.  Google Scholar

[14]

B. LiP. HouP. Chen and Q. Li, Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer, International Journal of Production Economics, 178 (2016), 154-168.   Google Scholar

[15]

W. LiuS. SongB. Li and C. Wu, A periodic review inventory model with loss-averse retailer, random supply capacity and demand, International Journal of Production Research, 53 (2015), 3623-3634.  doi: 10.1080/00207543.2014.985391.  Google Scholar

[16]

W. LiuS. SongY. Qiao and H. Zhao, The loss-averse newsvendor problem with random supply capacity, J. Ind. Manag. Optim., 13 (2017), 1417-1429.  doi: 10.3934/jimo.2016080.  Google Scholar

[17]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.  doi: 10.1016/j.ijpe.2012.08.017.  Google Scholar

[18]

W. LiuS. Song and C. Wu, The loss-averse newsvendor problem with random yield, Transactions of the Institute of Measurement and Control, 36 (2014), 312-320.   Google Scholar

[19]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2015), 3009-3012.  doi: 10.1287/mnsc.2014.2050.  Google Scholar

[20]

L. MaW. XueY. Zhao and Q. Zeng, Loss-averse newsvendor problem with supply risk, Journal of the Operational Research Society, 67 (2016), 214-228.   Google Scholar

[21]

L. MaY. ZhaoW. XueT. C. E. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.  doi: 10.1016/j.ijpe.2012.07.012.  Google Scholar

[22]

P. MandalR. Kaul and T. Jain, Stocking and pricing decisions under endogenous demand and reference point effects, European J. Oper. Res., 264 (2018), 181-199.  doi: 10.1016/j.ejor.2017.05.053.  Google Scholar

[23]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European J. Oper. Res., 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar

[24]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.   Google Scholar

[25]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of banking & finance, 26 (2002), 1443-1471.   Google Scholar

[26]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[27]

J. Sun and X. Xu, Coping with loss aversion in the newsvendor model, Discrete Dyn. Nat. Soc., (2015), Art. ID 851586, 11 pp. doi: 10.1155/2015/851586.  Google Scholar

[28]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertain, Journal of Risk and Uncertainty, 5 (1992), 297-323.   Google Scholar

[29]

B. Vipin and R. K. Amit, Loss aversion and rationality in the newsvendor problem under recourse option, European J. Oper. Res., 261 (2017), 563-571.  doi: 10.1016/j.ejor.2017.02.012.  Google Scholar

[30]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.  doi: 10.1016/j.ijpe.2009.12.007.  Google Scholar

[31]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

[32]

R. Wang and J. Wang, Procurement strategies with quantity-oriented reference point and loss aversion, Omega, 80 (2018), 1-11.  doi: 10.1016/j.omega.2017.08.007.  Google Scholar

[33]

M. WuT. Bai and S. X. Zhu, A loss averse competitive newsvendor problem with anchoring, Omega, 81 (2018), 99-111.  doi: 10.1016/j.omega.2017.10.003.  Google Scholar

[34]

M. WuS. X. Zhu and R. H. Teunter, A risk-averse competitive newsvendor problem under the CVaR criterion, International Journal of Production Economics, 156 (2014), 13-23.  doi: 10.1016/j.ijpe.2014.05.009.  Google Scholar

[35]

X. XuF. T. S. Chan and C. K. Chan, Optimal option purchase decision of a loss-averse retailer under emergent replenishment, International Journal of Production Research, 57 (2019), 4594-4620.  doi: 10.1080/00207543.2019.1579935.  Google Scholar

[36]

X. XuC. K. Chan and A. Langevin, Coping with risk management and fill rate in the loss-averse newsvendor model, International Journal of Production Economics, 195 (2018), 296-310.  doi: 10.1016/j.ijpe.2017.10.024.  Google Scholar

[37]

X. XuZ. MengR. ShenM. Jiang and P. Ji, Optimal decisions for the loss-averse newsvendor problem under CVaR, International Journal of Production Economics, 164 (2015), 146-159.   Google Scholar

[38]

X. XuH. WangC. Dang and P. Ji, The loss-averse newsvendor model with backordering, International Journal of Production Economics, 188 (2017), 1-10.  doi: 10.1016/j.ijpe.2017.03.005.  Google Scholar

[39]

H. YuJ. Zhai and G.-Y. Chen, Robust optimization for the loss-averse newsvendor problem, J. Optim. Theory Appl., 171 (2016), 1008-1032.  doi: 10.1007/s10957-016-0870-9.  Google Scholar

[40]

X.-B. Zhao and W. Geng, A note on "Prospect theory and the newsvendor problem", J. Oper. Res. Soc. China, 3 (2015), 89-94.  doi: 10.1007/s40305-015-0072-4.  Google Scholar

Figure 1.  Optimal order quantity vs loss aversion level
Figure 2.  Optimal order quantity vs target unit profit for different confidence levels
Table 1.  Summary of the notations
Notation Description
$ p $ Selling price per unit,
$ c $ Purchasing cost per unit,
$ s $ Salvage value per unit, $ p>c>s $,
$ Q $ Order quantity,
$ D $ Random demand,
$ f(x) $ Probability density function of $ D $,
$ F(x) $ Cumulative distribution function of $ D $,
$ \bar F(x) $ Tail distribution of $ F(x) $, i.e., $ \bar F(x)=1-F(x) $,
$ w_0 $ Target profit per unit,
$ \pi_0 $ Reference point,
$ \pi $ Newsvendor's profit,
$ \lambda $ Loss aversion level, $ \lambda\geq1 $,
$ \alpha $ Confidence level, $ 0\leq\alpha<1 $,
$ \beta $ Coefficient of convex combination, $ 0\leq\beta\leq1 $,
$ Q^* $ Optimal order quantity maximizing CVaR of utility,
$ Q^*_u $ Optimal order quantity maximizing expected utility,
$ Q^*_p $ Optimal order quantity maximizing expected profit
(with reference point),
$ Q^*_0 $ Classical newsvendor solution.
Notation Description
$ p $ Selling price per unit,
$ c $ Purchasing cost per unit,
$ s $ Salvage value per unit, $ p>c>s $,
$ Q $ Order quantity,
$ D $ Random demand,
$ f(x) $ Probability density function of $ D $,
$ F(x) $ Cumulative distribution function of $ D $,
$ \bar F(x) $ Tail distribution of $ F(x) $, i.e., $ \bar F(x)=1-F(x) $,
$ w_0 $ Target profit per unit,
$ \pi_0 $ Reference point,
$ \pi $ Newsvendor's profit,
$ \lambda $ Loss aversion level, $ \lambda\geq1 $,
$ \alpha $ Confidence level, $ 0\leq\alpha<1 $,
$ \beta $ Coefficient of convex combination, $ 0\leq\beta\leq1 $,
$ Q^* $ Optimal order quantity maximizing CVaR of utility,
$ Q^*_u $ Optimal order quantity maximizing expected utility,
$ Q^*_p $ Optimal order quantity maximizing expected profit
(with reference point),
$ Q^*_0 $ Classical newsvendor solution.
[1]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[2]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[3]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[4]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080

[5]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[6]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[7]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[8]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[9]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[10]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[11]

Yong Zhang, Huifen Zhong, Yue Liu, Menghu Huang. Online ordering strategy for the discrete newsvendor problem with order value-based free-shipping. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1617-1630. doi: 10.3934/jimo.2018114

[12]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[13]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial & Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[14]

Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. Journal of Dynamics & Games, 2018, 5 (2) : 143-163. doi: 10.3934/jdg.2018009

[15]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[16]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[17]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[18]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[19]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[20]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]