[1]
|
M. T. Ahmed and C. Kwon, Optimal contract-sizing in online display advertising for publishers with regret considerations, Omega, 42 (2014), 201-212.
doi: 10.1016/j.omega.2013.06.001.
|
[2]
|
N. Ayvaz-Cavdaroglu, S. Kachani and C. Maglaras, Revenue management with minimax regret negotiations, Omega, 63 (2016), 12-22.
doi: 10.1016/j.omega.2015.09.009.
|
[3]
|
Q. Bai and F. Meng, Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints, J. Ind. Manag. Optim., 16 (2020), 1943-1965.
doi: 10.3934/jimo.2019037.
|
[4]
|
D. Bell, Regret in decision making under uncertainty, Operations Research, 30 (1982), 961-981.
|
[5]
|
N. Camille, G. Coricelli, J. Sallet, P. Pradat-Diehl, J.-R. Duhamel and A. Sirigu, The involvement of the orbitofrontal cortex in the experience of regret, Science, 304 (2004), 1167-1170.
doi: 10.1126/science.1094550.
|
[6]
|
C. K. Chan, Y. Zhou and K. H. Wong, A dynamic equilibrium model of the oligopolistic closed-loop supply chain network under uncertain and time-dependent demands, Transportation Research Part E, 118 (2018), 325-354.
doi: 10.1016/j.tre.2018.07.008.
|
[7]
|
C. K. Chan, Y. Zhou and K. H. Wong, An equilibrium model of the supply chain network under multi-attribute behaviors analysis, European J. Oper. Res., 275 (2019), 514-535.
doi: 10.1016/j.ejor.2018.11.068.
|
[8]
|
A. Chassein and M. Goerigk, Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets, European J. Oper. Res., 258 (2017), 58-69.
doi: 10.1016/j.ejor.2016.10.055.
|
[9]
|
C. G. Chorus, Regret theory-based route choices and traffic equilibria, Transportmetrica, 8 (2012), 291-305.
doi: 10.1080/18128602.2010.498391.
|
[10]
|
E. Conde, M. Leal and J. Puerto, A minmax regret version of the time-dependent shortest path problem, European J. Oper. Res., 270 (2018), 968-981.
doi: 10.1016/j.ejor.2018.04.030.
|
[11]
|
G. Coricelli, H. D. Critchley, M. Joffily, J. P. O'Doherty, A. Sirigu and R. J. Dolan, Regret and its avoidance: A neuroimaging study of choice behavior, Nature Neuroscience, 8 (2005), 1255-1262.
doi: 10.1038/nn1514.
|
[12]
|
J. M. Cruz and Z. Liu, Modeling and analysis of the multiperiod effects of social relationship on supply chain networks, European J. Oper. Res., 214 (2011), 39-52.
doi: 10.1016/j.ejor.2011.03.044.
|
[13]
|
H. Deng, Y. Li, Z. Wan and Z. Wan, Partially smoothing and gradient-based algorithm for optimizing the VMI system with competitive retailers under random demands, Math. Probl. Eng., (2020), 3687471, 18 pp.
doi: 10.1155/2020/3687471.
|
[14]
|
J. Dong, D. Zhang and A. Nagurney, A supply chain network equilibrium model with random demand, European J. Oper. Res., 156 (2004), 194-212.
doi: 10.1016/S0377-2217(03)00023-7.
|
[15]
|
R. Engelbrecht-Wiggans and E. Katok, Regret and feedback information in first-price sealed-bid auctions, Management Science, 54 (2008), 808-819.
doi: 10.1287/mnsc.1070.0806.
|
[16]
|
M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99.
|
[17]
|
H. Gilbert and O. Spanjaard, A double oracle approach to minmax regret optimization problems with interval data, European J. Oper. Res., 262 (2017), 929-943.
doi: 10.1016/j.ejor.2017.04.058.
|
[18]
|
Y. Hamdouch, Multi-period supply chain network equilibrium with capacity constraints and purchasing strategies, Transportation Research Part C, 19 (2011), 803-820.
doi: 10.1016/j.trc.2011.02.006.
|
[19]
|
T.-H. Ho and J. Zhang, Designing pricing contracts for boundedly rational customers: Does the framing of the fixed fee matter?, Manageament Science, 54 (2008), 686-700.
doi: 10.1287/mnsc.1070.0788.
|
[20]
|
A. Jabbarzadeh, B. Fahimnia and J.-B. Sheu, An enhanced robustness approach for managing supply and demand uncertainties, International Journal of Production Economics, 183 (2017), 620-631.
doi: 10.1016/j.ijpe.2015.06.009.
|
[21]
|
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719451.
|
[22]
|
G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Ékonom. i Mat. Metody, 12 (1976), 747-756.
|
[23]
|
Y. Kuang and C. T. Ng, Pricing substitutable products under consumer regrets, International Journal of Production Economics, 203 (2018), 286-300.
doi: 10.1016/j.ijpe.2018.07.006.
|
[24]
|
H. Li, T. Luo, Y. Xu and J. Xu, Minimax regret vertex centdian location problem in general dynamic networks, Omega, 75 (2018), 87-96.
doi: 10.1016/j.omega.2017.02.004.
|
[25]
|
D. Li, A. Nagurney and M. Yu, Consumer learning of product quality with time delay: Insights from spatial price equilibrium models with differentiated products, Omega, 81 (2018), 150-168.
doi: 10.1016/j.omega.2017.10.007.
|
[26]
|
G. Loomes and R. Sugden, Regret theory: An alternative theory of rational choice, The Economic Journal, 92 (1982), 805-824.
|
[27]
|
A. Nagurney, Network Economics: A Variational Inequality Approach, Advances in Computational Economics, 1. Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-011-2178-1.
|
[28]
|
A. Nagurney, J. Dong and D. Zhang, A supply chain network equilibrium model, Transportation Research Part E, 38 (2002), 281-303.
doi: 10.1016/S1366-5545(01)00020-5.
|
[29]
|
A. Nagurney, M. Salarpour and P. Daniele, An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints, International Journal of Production Economics, 212 (2019), 212-226.
doi: 10.1016/j.ijpe.2019.02.006.
|
[30]
|
J. F. Nash Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 48-49.
doi: 10.1073/pnas.36.1.48.
|
[31]
|
J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.
doi: 10.2307/1969529.
|
[32]
|
G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Oper. Res., 56 (2008), 188-203.
doi: 10.1287/opre.1070.0486.
|
[33]
|
G. de. O. Ramos, A. L. C. Bazzan and B. C. da Silva, Analysing the impact of travel information for minimising the regret of route choice, Transportation Research Part C, 88 (2018), 257-271.
doi: 10.1016/j.trc.2017.11.011.
|
[34]
|
S. Saberi, J. M. Cruz, J. Sarkis and A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option, European J. Oper. Res., 266 (2018), 934-949.
doi: 10.1016/j.ejor.2017.10.043.
|
[35]
|
M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence, Manageament Science, 46 (2000), 404-420.
doi: 10.1287/mnsc.46.3.404.12070.
|
[36]
|
Z. Wan, H. Wu and L. Dai, A polymorphic uncertain equilibrium model and its deterministic equivalent formulation for decentralized supply chain management, Appl. Math. Model., 58 (2018), 281-299.
doi: 10.1016/j.apm.2017.06.028.
|
[37]
|
J. Wang and B. Xiao, A minmax regret price control model for managing perishable products with uncertain parameters, European J. Oper. Res., 258 (2017), 652-663.
doi: 10.1016/j.ejor.2016.09.024.
|
[38]
|
W. Wang, P. Zhang, J. Ding, J. Li, H. Sun and L. He, Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199-219.
doi: 10.3934/jimo.2018039.
|
[39]
|
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041.
|
[40]
|
X. Yan, H.-Y. Chong, J. Zhou, Z. Sheng and F. Xu, Fairness preference based decision-making model for concession period in PPP projects, J. Ind. Manag. Optim., 16 (2020), 11-23.
doi: 10.3934/jimo.2018137.
|
[41]
|
M. Zeelenberg, Anticipated regret, expected feedback and behavioral decision making, Journal of Behavioral Decision Making, 12 (1999), 93-106.
doi: 10.1002/(SICI)1099-0771(199906)12:2<93::AID-BDM311>3.0.CO;2-S.
|
[42]
|
Y. Zhou, C. Chan and K. Wong, A multi-period supply chain network equilibrium model considering retailers' uncertain demands and dynamic loss-averse behaviors, Transportation Research Part E, 118 (2018), 51-76.
doi: 10.1016/j.tre.2018.06.006.
|
[43]
|
Y. Zhou, Z. Shen, R. Ying and X. Xu, A loss-averse two-product odering model with information updating in two-echelon inventory system, J. Ind. Manag. Optim., 14 (2018), 687-705.
doi: 10.3934/jimo.2017069.
|