July  2022, 18(4): 2651-2675. doi: 10.3934/jimo.2021086

The impacts of retailers' regret aversion on a random multi-period supply chain network

1. 

Department of Management Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China

2. 

Hong Kong Statistical Society, Hong Kong, China

3. 

School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

* Corresponding author

Received  August 2020 Revised  March 2021 Published  July 2022 Early access  April 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China under grant 71901129 71771129

Most current studies on the equilibrium decision-makings of a supply chain network (SCN) consider only completely rational retailers who always try to maximize their expected profits under the situations that demands are random. However, many evidences show that a retailer wants to choose the decision-making involving random demand which provides him with minimum regret. In this paper, we consider the impacts of retailers' anticipated regret aversion and experiential regret aversion on the equilibrium decision-makings of a random SCN with multiple production periods. Due to the random demand, the decision-makings of retailers are influenced not only by their anticipated regret, but also by their experiential regret after they have encountered bad or good experiences during past periods. The equilibrium conditions of the model are established. A numerical example is solved to illustrate the benefit of retailers obtained by considering their regret-averse behaviors. Moreover, it is found that retailers should consider their anticipated regret aversion or experiential regret aversion according to different situations of the demand markets.
 
Correction: The third author's affiliation, previously "School of Computational and Applied Mathematics," is now called "School of Computer Science and Applied Mathematics."

Citation: Yan Zhou, Chi Kin Chan, Kar Hung Wong. The impacts of retailers' regret aversion on a random multi-period supply chain network. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2651-2675. doi: 10.3934/jimo.2021086
References:
[1]

M. T. Ahmed and C. Kwon, Optimal contract-sizing in online display advertising for publishers with regret considerations, Omega, 42 (2014), 201-212.  doi: 10.1016/j.omega.2013.06.001.

[2]

N. Ayvaz-CavdarogluS. Kachani and C. Maglaras, Revenue management with minimax regret negotiations, Omega, 63 (2016), 12-22.  doi: 10.1016/j.omega.2015.09.009.

[3]

Q. Bai and F. Meng, Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints, J. Ind. Manag. Optim., 16 (2020), 1943-1965.  doi: 10.3934/jimo.2019037.

[4]

D. Bell, Regret in decision making under uncertainty, Operations Research, 30 (1982), 961-981. 

[5]

N. CamilleG. CoricelliJ. SalletP. Pradat-DiehlJ.-R. Duhamel and A. Sirigu, The involvement of the orbitofrontal cortex in the experience of regret, Science, 304 (2004), 1167-1170.  doi: 10.1126/science.1094550.

[6]

C. K. ChanY. Zhou and K. H. Wong, A dynamic equilibrium model of the oligopolistic closed-loop supply chain network under uncertain and time-dependent demands, Transportation Research Part E, 118 (2018), 325-354.  doi: 10.1016/j.tre.2018.07.008.

[7]

C. K. ChanY. Zhou and K. H. Wong, An equilibrium model of the supply chain network under multi-attribute behaviors analysis, European J. Oper. Res., 275 (2019), 514-535.  doi: 10.1016/j.ejor.2018.11.068.

[8]

A. Chassein and M. Goerigk, Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets, European J. Oper. Res., 258 (2017), 58-69.  doi: 10.1016/j.ejor.2016.10.055.

[9]

C. G. Chorus, Regret theory-based route choices and traffic equilibria, Transportmetrica, 8 (2012), 291-305.  doi: 10.1080/18128602.2010.498391.

[10]

E. CondeM. Leal and J. Puerto, A minmax regret version of the time-dependent shortest path problem, European J. Oper. Res., 270 (2018), 968-981.  doi: 10.1016/j.ejor.2018.04.030.

[11]

G. CoricelliH. D. CritchleyM. JoffilyJ. P. O'DohertyA. Sirigu and R. J. Dolan, Regret and its avoidance: A neuroimaging study of choice behavior, Nature Neuroscience, 8 (2005), 1255-1262.  doi: 10.1038/nn1514.

[12]

J. M. Cruz and Z. Liu, Modeling and analysis of the multiperiod effects of social relationship on supply chain networks, European J. Oper. Res., 214 (2011), 39-52.  doi: 10.1016/j.ejor.2011.03.044.

[13]

H. Deng, Y. Li, Z. Wan and Z. Wan, Partially smoothing and gradient-based algorithm for optimizing the VMI system with competitive retailers under random demands, Math. Probl. Eng., (2020), 3687471, 18 pp. doi: 10.1155/2020/3687471.

[14]

J. DongD. Zhang and A. Nagurney, A supply chain network equilibrium model with random demand, European J. Oper. Res., 156 (2004), 194-212.  doi: 10.1016/S0377-2217(03)00023-7.

[15]

R. Engelbrecht-Wiggans and E. Katok, Regret and feedback information in first-price sealed-bid auctions, Management Science, 54 (2008), 808-819.  doi: 10.1287/mnsc.1070.0806.

[16]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99. 

[17]

H. Gilbert and O. Spanjaard, A double oracle approach to minmax regret optimization problems with interval data, European J. Oper. Res., 262 (2017), 929-943.  doi: 10.1016/j.ejor.2017.04.058.

[18]

Y. Hamdouch, Multi-period supply chain network equilibrium with capacity constraints and purchasing strategies, Transportation Research Part C, 19 (2011), 803-820.  doi: 10.1016/j.trc.2011.02.006.

[19]

T.-H. Ho and J. Zhang, Designing pricing contracts for boundedly rational customers: Does the framing of the fixed fee matter?, Manageament Science, 54 (2008), 686-700.  doi: 10.1287/mnsc.1070.0788.

[20]

A. JabbarzadehB. Fahimnia and J.-B. Sheu, An enhanced robustness approach for managing supply and demand uncertainties, International Journal of Production Economics, 183 (2017), 620-631.  doi: 10.1016/j.ijpe.2015.06.009.

[21]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719451.

[22]

G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Ékonom. i Mat. Metody, 12 (1976), 747-756. 

[23]

Y. Kuang and C. T. Ng, Pricing substitutable products under consumer regrets, International Journal of Production Economics, 203 (2018), 286-300.  doi: 10.1016/j.ijpe.2018.07.006.

[24]

H. LiT. LuoY. Xu and J. Xu, Minimax regret vertex centdian location problem in general dynamic networks, Omega, 75 (2018), 87-96.  doi: 10.1016/j.omega.2017.02.004.

[25]

D. LiA. Nagurney and M. Yu, Consumer learning of product quality with time delay: Insights from spatial price equilibrium models with differentiated products, Omega, 81 (2018), 150-168.  doi: 10.1016/j.omega.2017.10.007.

[26]

G. Loomes and R. Sugden, Regret theory: An alternative theory of rational choice, The Economic Journal, 92 (1982), 805-824. 

[27]

A. Nagurney, Network Economics: A Variational Inequality Approach, Advances in Computational Economics, 1. Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-011-2178-1.

[28]

A. NagurneyJ. Dong and D. Zhang, A supply chain network equilibrium model, Transportation Research Part E, 38 (2002), 281-303.  doi: 10.1016/S1366-5545(01)00020-5.

[29]

A. NagurneyM. Salarpour and P. Daniele, An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints, International Journal of Production Economics, 212 (2019), 212-226.  doi: 10.1016/j.ijpe.2019.02.006.

[30]

J. F. Nash Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.

[31]

J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.  doi: 10.2307/1969529.

[32]

G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Oper. Res., 56 (2008), 188-203.  doi: 10.1287/opre.1070.0486.

[33]

G. de. O. RamosA. L. C. Bazzan and B. C. da Silva, Analysing the impact of travel information for minimising the regret of route choice, Transportation Research Part C, 88 (2018), 257-271.  doi: 10.1016/j.trc.2017.11.011.

[34]

S. SaberiJ. M. CruzJ. Sarkis and A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option, European J. Oper. Res., 266 (2018), 934-949.  doi: 10.1016/j.ejor.2017.10.043.

[35]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence, Manageament Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.

[36]

Z. WanH. Wu and L. Dai, A polymorphic uncertain equilibrium model and its deterministic equivalent formulation for decentralized supply chain management, Appl. Math. Model., 58 (2018), 281-299.  doi: 10.1016/j.apm.2017.06.028.

[37]

J. Wang and B. Xiao, A minmax regret price control model for managing perishable products with uncertain parameters, European J. Oper. Res., 258 (2017), 652-663.  doi: 10.1016/j.ejor.2016.09.024.

[38]

W. WangP. ZhangJ. DingJ. LiH. Sun and L. He, Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199-219.  doi: 10.3934/jimo.2018039.

[39]

P. XidonasG. MavrotasC. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.  doi: 10.1016/j.ejor.2017.03.041.

[40]

X. YanH.-Y. ChongJ. ZhouZ. Sheng and F. Xu, Fairness preference based decision-making model for concession period in PPP projects, J. Ind. Manag. Optim., 16 (2020), 11-23.  doi: 10.3934/jimo.2018137.

[41]

M. Zeelenberg, Anticipated regret, expected feedback and behavioral decision making, Journal of Behavioral Decision Making, 12 (1999), 93-106.  doi: 10.1002/(SICI)1099-0771(199906)12:2<93::AID-BDM311>3.0.CO;2-S.

[42]

Y. ZhouC. Chan and K. Wong, A multi-period supply chain network equilibrium model considering retailers' uncertain demands and dynamic loss-averse behaviors, Transportation Research Part E, 118 (2018), 51-76.  doi: 10.1016/j.tre.2018.06.006.

[43]

Y. ZhouZ. ShenR. Ying and X. Xu, A loss-averse two-product odering model with information updating in two-echelon inventory system, J. Ind. Manag. Optim., 14 (2018), 687-705.  doi: 10.3934/jimo.2017069.

show all references

References:
[1]

M. T. Ahmed and C. Kwon, Optimal contract-sizing in online display advertising for publishers with regret considerations, Omega, 42 (2014), 201-212.  doi: 10.1016/j.omega.2013.06.001.

[2]

N. Ayvaz-CavdarogluS. Kachani and C. Maglaras, Revenue management with minimax regret negotiations, Omega, 63 (2016), 12-22.  doi: 10.1016/j.omega.2015.09.009.

[3]

Q. Bai and F. Meng, Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints, J. Ind. Manag. Optim., 16 (2020), 1943-1965.  doi: 10.3934/jimo.2019037.

[4]

D. Bell, Regret in decision making under uncertainty, Operations Research, 30 (1982), 961-981. 

[5]

N. CamilleG. CoricelliJ. SalletP. Pradat-DiehlJ.-R. Duhamel and A. Sirigu, The involvement of the orbitofrontal cortex in the experience of regret, Science, 304 (2004), 1167-1170.  doi: 10.1126/science.1094550.

[6]

C. K. ChanY. Zhou and K. H. Wong, A dynamic equilibrium model of the oligopolistic closed-loop supply chain network under uncertain and time-dependent demands, Transportation Research Part E, 118 (2018), 325-354.  doi: 10.1016/j.tre.2018.07.008.

[7]

C. K. ChanY. Zhou and K. H. Wong, An equilibrium model of the supply chain network under multi-attribute behaviors analysis, European J. Oper. Res., 275 (2019), 514-535.  doi: 10.1016/j.ejor.2018.11.068.

[8]

A. Chassein and M. Goerigk, Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets, European J. Oper. Res., 258 (2017), 58-69.  doi: 10.1016/j.ejor.2016.10.055.

[9]

C. G. Chorus, Regret theory-based route choices and traffic equilibria, Transportmetrica, 8 (2012), 291-305.  doi: 10.1080/18128602.2010.498391.

[10]

E. CondeM. Leal and J. Puerto, A minmax regret version of the time-dependent shortest path problem, European J. Oper. Res., 270 (2018), 968-981.  doi: 10.1016/j.ejor.2018.04.030.

[11]

G. CoricelliH. D. CritchleyM. JoffilyJ. P. O'DohertyA. Sirigu and R. J. Dolan, Regret and its avoidance: A neuroimaging study of choice behavior, Nature Neuroscience, 8 (2005), 1255-1262.  doi: 10.1038/nn1514.

[12]

J. M. Cruz and Z. Liu, Modeling and analysis of the multiperiod effects of social relationship on supply chain networks, European J. Oper. Res., 214 (2011), 39-52.  doi: 10.1016/j.ejor.2011.03.044.

[13]

H. Deng, Y. Li, Z. Wan and Z. Wan, Partially smoothing and gradient-based algorithm for optimizing the VMI system with competitive retailers under random demands, Math. Probl. Eng., (2020), 3687471, 18 pp. doi: 10.1155/2020/3687471.

[14]

J. DongD. Zhang and A. Nagurney, A supply chain network equilibrium model with random demand, European J. Oper. Res., 156 (2004), 194-212.  doi: 10.1016/S0377-2217(03)00023-7.

[15]

R. Engelbrecht-Wiggans and E. Katok, Regret and feedback information in first-price sealed-bid auctions, Management Science, 54 (2008), 808-819.  doi: 10.1287/mnsc.1070.0806.

[16]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99. 

[17]

H. Gilbert and O. Spanjaard, A double oracle approach to minmax regret optimization problems with interval data, European J. Oper. Res., 262 (2017), 929-943.  doi: 10.1016/j.ejor.2017.04.058.

[18]

Y. Hamdouch, Multi-period supply chain network equilibrium with capacity constraints and purchasing strategies, Transportation Research Part C, 19 (2011), 803-820.  doi: 10.1016/j.trc.2011.02.006.

[19]

T.-H. Ho and J. Zhang, Designing pricing contracts for boundedly rational customers: Does the framing of the fixed fee matter?, Manageament Science, 54 (2008), 686-700.  doi: 10.1287/mnsc.1070.0788.

[20]

A. JabbarzadehB. Fahimnia and J.-B. Sheu, An enhanced robustness approach for managing supply and demand uncertainties, International Journal of Production Economics, 183 (2017), 620-631.  doi: 10.1016/j.ijpe.2015.06.009.

[21]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719451.

[22]

G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Ékonom. i Mat. Metody, 12 (1976), 747-756. 

[23]

Y. Kuang and C. T. Ng, Pricing substitutable products under consumer regrets, International Journal of Production Economics, 203 (2018), 286-300.  doi: 10.1016/j.ijpe.2018.07.006.

[24]

H. LiT. LuoY. Xu and J. Xu, Minimax regret vertex centdian location problem in general dynamic networks, Omega, 75 (2018), 87-96.  doi: 10.1016/j.omega.2017.02.004.

[25]

D. LiA. Nagurney and M. Yu, Consumer learning of product quality with time delay: Insights from spatial price equilibrium models with differentiated products, Omega, 81 (2018), 150-168.  doi: 10.1016/j.omega.2017.10.007.

[26]

G. Loomes and R. Sugden, Regret theory: An alternative theory of rational choice, The Economic Journal, 92 (1982), 805-824. 

[27]

A. Nagurney, Network Economics: A Variational Inequality Approach, Advances in Computational Economics, 1. Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-011-2178-1.

[28]

A. NagurneyJ. Dong and D. Zhang, A supply chain network equilibrium model, Transportation Research Part E, 38 (2002), 281-303.  doi: 10.1016/S1366-5545(01)00020-5.

[29]

A. NagurneyM. Salarpour and P. Daniele, An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints, International Journal of Production Economics, 212 (2019), 212-226.  doi: 10.1016/j.ijpe.2019.02.006.

[30]

J. F. Nash Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.

[31]

J. Nash, Non-cooperative games, Ann. of Math., 54 (1951), 286-295.  doi: 10.2307/1969529.

[32]

G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Oper. Res., 56 (2008), 188-203.  doi: 10.1287/opre.1070.0486.

[33]

G. de. O. RamosA. L. C. Bazzan and B. C. da Silva, Analysing the impact of travel information for minimising the regret of route choice, Transportation Research Part C, 88 (2018), 257-271.  doi: 10.1016/j.trc.2017.11.011.

[34]

S. SaberiJ. M. CruzJ. Sarkis and A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option, European J. Oper. Res., 266 (2018), 934-949.  doi: 10.1016/j.ejor.2017.10.043.

[35]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence, Manageament Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.

[36]

Z. WanH. Wu and L. Dai, A polymorphic uncertain equilibrium model and its deterministic equivalent formulation for decentralized supply chain management, Appl. Math. Model., 58 (2018), 281-299.  doi: 10.1016/j.apm.2017.06.028.

[37]

J. Wang and B. Xiao, A minmax regret price control model for managing perishable products with uncertain parameters, European J. Oper. Res., 258 (2017), 652-663.  doi: 10.1016/j.ejor.2016.09.024.

[38]

W. WangP. ZhangJ. DingJ. LiH. Sun and L. He, Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199-219.  doi: 10.3934/jimo.2018039.

[39]

P. XidonasG. MavrotasC. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.  doi: 10.1016/j.ejor.2017.03.041.

[40]

X. YanH.-Y. ChongJ. ZhouZ. Sheng and F. Xu, Fairness preference based decision-making model for concession period in PPP projects, J. Ind. Manag. Optim., 16 (2020), 11-23.  doi: 10.3934/jimo.2018137.

[41]

M. Zeelenberg, Anticipated regret, expected feedback and behavioral decision making, Journal of Behavioral Decision Making, 12 (1999), 93-106.  doi: 10.1002/(SICI)1099-0771(199906)12:2<93::AID-BDM311>3.0.CO;2-S.

[42]

Y. ZhouC. Chan and K. Wong, A multi-period supply chain network equilibrium model considering retailers' uncertain demands and dynamic loss-averse behaviors, Transportation Research Part E, 118 (2018), 51-76.  doi: 10.1016/j.tre.2018.06.006.

[43]

Y. ZhouZ. ShenR. Ying and X. Xu, A loss-averse two-product odering model with information updating in two-echelon inventory system, J. Ind. Manag. Optim., 14 (2018), 687-705.  doi: 10.3934/jimo.2017069.

Figure 1.  The structure of SCN for $ T $ production periods
Figure 2.  The regret function $ R(\Delta v_j(t)) $ with different regret aversion coefficient $ \delta $
Figure 3.  The profit, regret and utility of all the decision makers in the rise situation of Example 1
Figure 4.  The profit, regret and utility of all the decision makers in the depleted situation of Example 1
Table 1.  The equilibrium in the rise situation of Example 1
$ i=1,2 $, $ j=1,2 $ regret-neutral anticipated regret-averse
$ k_j(t) $ $ k_j(t) $
$ 0 $ $ 0.2 $ $ 0.4 $ $ 0.6 $ $ 0.8 $
$ \hat{q}_i^*(t),t=1 $ 1.8633 1.6578 1.4318 1.1823 0.9097
$ \hat{q}_i^*(t),t=2 $ 1.5945 1.4185 1.2248 1.0108 0.7769
$ \hat{q}_i^*(t),t=3 $ 1.4934 1.3291 1.148 0.9476 0.728
$ I_i^*(t),t=1 $ 0.5254 0.4672 0.4026 0.3309 0.2523
$ I_i^*(t),t=2 $ 0.4356 0.3887 0.3364 0.2779 0.213
$ q_{ij}^*(t),t=1 $ 0.6692 0.5938 0.5125 0.4237 0.3272
$ q_{ij}^*(t),t=2 $ 0.8424 0.7469 0.6431 0.5297 0.4064
$ q_{ij}^*(t),t=3 $ 0.9648 0.8571 0.7396 0.6102 0.4686
$ \rho_{j}^*(t),t=1 $ 35.8181 40.1667 46.2534 55.4406 70.7135
$ \rho_{j}^*(t),t=2 $ 40.228 45.183 52.1475 62.7221 80.4573
$ \rho_{j}^*(t),t=3 $ 45.2266 50.7262 58.4607 70.2238 90.025
$ i=1,2 $, $ j=1,2 $ regret-neutral anticipated regret-averse
$ k_j(t) $ $ k_j(t) $
$ 0 $ $ 0.2 $ $ 0.4 $ $ 0.6 $ $ 0.8 $
$ \hat{q}_i^*(t),t=1 $ 1.8633 1.6578 1.4318 1.1823 0.9097
$ \hat{q}_i^*(t),t=2 $ 1.5945 1.4185 1.2248 1.0108 0.7769
$ \hat{q}_i^*(t),t=3 $ 1.4934 1.3291 1.148 0.9476 0.728
$ I_i^*(t),t=1 $ 0.5254 0.4672 0.4026 0.3309 0.2523
$ I_i^*(t),t=2 $ 0.4356 0.3887 0.3364 0.2779 0.213
$ q_{ij}^*(t),t=1 $ 0.6692 0.5938 0.5125 0.4237 0.3272
$ q_{ij}^*(t),t=2 $ 0.8424 0.7469 0.6431 0.5297 0.4064
$ q_{ij}^*(t),t=3 $ 0.9648 0.8571 0.7396 0.6102 0.4686
$ \rho_{j}^*(t),t=1 $ 35.8181 40.1667 46.2534 55.4406 70.7135
$ \rho_{j}^*(t),t=2 $ 40.228 45.183 52.1475 62.7221 80.4573
$ \rho_{j}^*(t),t=3 $ 45.2266 50.7262 58.4607 70.2238 90.025
Table 2.  The equilibrium in the depleted situation of Example 1
$ i=1,2 $, $ j=1,2 $ regret-neutral anticipated regret
$ k_j(t) $ $ k_j(t) $
$ 0 $ $ 0.2 $ $ 0.4 $ $ 0.6 $ $ 0.8 $
$ \hat{q}_i^*(t),t=1 $ 2.1408 1.899 1.634 1.3421 1.0253
$ \hat{q}_i^*(t),t=2 $ 1.6228 1.4407 1.2413 1.0214 0.7833
$ \hat{q}_i^*(t),t=3 $ 1.253 1.1216 0.9755 0.813 0.6293
$ I_i^*(t),t=1 $ 0.0457 0.044 0.0421 0.0395 0.0381
$ I_i^*(t),t=2 $ 0 0 0 0 0.0055
$ q_{ij}^*(t),t=1 $ 1.0476 0.9261 0.7939 0.6492 0.492
$ q_{ij}^*(t),t=2 $ 0.8344 0.7408 0.6395 0.5282 0.4062
$ q_{ij}^*(t),t=3 $ 0.6275 0.559 0.4851 0.404 0.3157
$ \rho_{j}^*(t),t=1 $ 42.1631 47.4737 54.9998 66.5564 86.286
$ \rho_{j}^*(t),t=2 $ 40.6374 45.5225 52.3862 62.818 80.423
$ \rho_{j}^*(t),t=3 $ 37.6092 42.0773 48.2821 57.565 72.7609
$ i=1,2 $, $ j=1,2 $ regret-neutral anticipated regret
$ k_j(t) $ $ k_j(t) $
$ 0 $ $ 0.2 $ $ 0.4 $ $ 0.6 $ $ 0.8 $
$ \hat{q}_i^*(t),t=1 $ 2.1408 1.899 1.634 1.3421 1.0253
$ \hat{q}_i^*(t),t=2 $ 1.6228 1.4407 1.2413 1.0214 0.7833
$ \hat{q}_i^*(t),t=3 $ 1.253 1.1216 0.9755 0.813 0.6293
$ I_i^*(t),t=1 $ 0.0457 0.044 0.0421 0.0395 0.0381
$ I_i^*(t),t=2 $ 0 0 0 0 0.0055
$ q_{ij}^*(t),t=1 $ 1.0476 0.9261 0.7939 0.6492 0.492
$ q_{ij}^*(t),t=2 $ 0.8344 0.7408 0.6395 0.5282 0.4062
$ q_{ij}^*(t),t=3 $ 0.6275 0.559 0.4851 0.404 0.3157
$ \rho_{j}^*(t),t=1 $ 42.1631 47.4737 54.9998 66.5564 86.286
$ \rho_{j}^*(t),t=2 $ 40.6374 45.5225 52.3862 62.818 80.423
$ \rho_{j}^*(t),t=3 $ 37.6092 42.0773 48.2821 57.565 72.7609
Table 3.  The equilibrium decisions, profit, regret and utility in experiential regret-averse model of Example 1
$ i=1,2 $ in the rise situation in the depleted situation
$ j=1,2 $ anticipated experiential regret anticipated experiential regret
$ \tau=0\% $ $ \tau=10\% $ $ \tau=20\% $ $ \tau=0\% $ $ \tau=10\% $ $ \tau=20\% $
$ \hat{q}_i^*(t),t=1 $ 1.1823 1.111 1.0317 1.3421 1.3922 1.4385
$ \hat{q}_i^*(t),t=2 $ 1.0108 0.9324 0.8457 1.0214 1.0765 1.1285
$ \hat{q}_i^*(t),t=3 $ 0.9476 0.8502 0.744 0.813 0.8763 0.9326
$ I_i^*(t),t=1 $ 0.3309 0.2645 0.1918 0.0395 0.0863 0.1325
$ I_i^*(t),t=2 $ 0.2779 0.2087 0.135 0 0.0302 0.0597
$ q_{ij}^*(t),t=1 $ 0.4237 0.4215 0.4187 0.6492 0.6506 0.6505
$ q_{ij}^*(t),t=2 $ 0.5297 0.4921 0.4497 0.5282 0.564 0.5983
$ q_{ij}^*(t),t=3 $ 0.6102 0.5269 0.4374 0.404 0.4509 0.4941
$ \rho_{j}^*(t),t=1 $ 55.4406 56.6548 58.0501 66.5564 65.7988 65.2914
$ \rho_{j}^*(t),t=2 $ 62.7221 67.4657 73.9462 62.818 59.1709 56.155
$ \rho_{j}^*(t),t=3 $ 70.2238 79.7648 93.8077 57.565 52.5551 48.7155
$ \Sigma M_{i}(t) $ 12.1586 10.1711 8.2357 11.8539 13.1645 14.4529
$ \Sigma E(\pi_{j}(t)) $ 105.2413 110.8787 116.4356 105.4868 101.6604 97.9989
$ \Sigma E(R_j) $ 48.8578 48.3116 47.7065 48.959 49.2566 49.5897
$ E(U_{j}) $ 75.9265 78.371 80.7928 76.1115 74.4315 72.8693
Total profit 234.7998 242.0996 249.3426 234.6814 229.6498 224.9036
$ i=1,2 $ in the rise situation in the depleted situation
$ j=1,2 $ anticipated experiential regret anticipated experiential regret
$ \tau=0\% $ $ \tau=10\% $ $ \tau=20\% $ $ \tau=0\% $ $ \tau=10\% $ $ \tau=20\% $
$ \hat{q}_i^*(t),t=1 $ 1.1823 1.111 1.0317 1.3421 1.3922 1.4385
$ \hat{q}_i^*(t),t=2 $ 1.0108 0.9324 0.8457 1.0214 1.0765 1.1285
$ \hat{q}_i^*(t),t=3 $ 0.9476 0.8502 0.744 0.813 0.8763 0.9326
$ I_i^*(t),t=1 $ 0.3309 0.2645 0.1918 0.0395 0.0863 0.1325
$ I_i^*(t),t=2 $ 0.2779 0.2087 0.135 0 0.0302 0.0597
$ q_{ij}^*(t),t=1 $ 0.4237 0.4215 0.4187 0.6492 0.6506 0.6505
$ q_{ij}^*(t),t=2 $ 0.5297 0.4921 0.4497 0.5282 0.564 0.5983
$ q_{ij}^*(t),t=3 $ 0.6102 0.5269 0.4374 0.404 0.4509 0.4941
$ \rho_{j}^*(t),t=1 $ 55.4406 56.6548 58.0501 66.5564 65.7988 65.2914
$ \rho_{j}^*(t),t=2 $ 62.7221 67.4657 73.9462 62.818 59.1709 56.155
$ \rho_{j}^*(t),t=3 $ 70.2238 79.7648 93.8077 57.565 52.5551 48.7155
$ \Sigma M_{i}(t) $ 12.1586 10.1711 8.2357 11.8539 13.1645 14.4529
$ \Sigma E(\pi_{j}(t)) $ 105.2413 110.8787 116.4356 105.4868 101.6604 97.9989
$ \Sigma E(R_j) $ 48.8578 48.3116 47.7065 48.959 49.2566 49.5897
$ E(U_{j}) $ 75.9265 78.371 80.7928 76.1115 74.4315 72.8693
Total profit 234.7998 242.0996 249.3426 234.6814 229.6498 224.9036
[1]

Ying Dai, Yi Zhang, Han Song, Lin Zhou, Haiyan Li. Investment decision-making of closed-loop supply chain driven by big data technology. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022134

[2]

Haiju Hu, Yakun Li, Mengdi Li, Weipeng Zhu, Faiza Chan. Optimal decision-making of green agricultural product supply chain with fairness concerns. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022155

[3]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[4]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1161-1183. doi: 10.3934/jimo.2021014

[5]

Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial and Management Optimization, 2022, 18 (5) : 3393-3431. doi: 10.3934/jimo.2021118

[6]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[7]

Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial and Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041

[8]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[9]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial and Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[10]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[11]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[12]

Qiang Yan, Mingqiao Luan, Yu Lin, Fangyu Ye. Equilibrium strategies in a supply chain with capital constrained suppliers: The impact of external financing. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3027-3047. doi: 10.3934/jimo.2020106

[13]

Qingguo Bai, Fanwen Meng. Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1943-1965. doi: 10.3934/jimo.2019037

[14]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3269-3295. doi: 10.3934/jimo.2020118

[15]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1737-1768. doi: 10.3934/jimo.2021042

[16]

Chao Zhao, Jixiang Song. Coordination of dual-channel supply chain considering differential pricing and loss-aversion based on quality control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022053

[17]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[18]

Zongwei Chen. An online-decision algorithm for the multi-period bank clearing problem. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2783-2803. doi: 10.3934/jimo.2021091

[19]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2022, 18 (1) : 541-560. doi: 10.3934/jimo.2020167

[20]

Jian Liu, Xin Wu, Jiang-Ling Lei. The combined impacts of consumer green preference and fairness concern on the decision of three-party supply chain. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2749-2782. doi: 10.3934/jimo.2021090

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (509)
  • HTML views (632)
  • Cited by (0)

Other articles
by authors

[Back to Top]