• Previous Article
    General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes
  • JIMO Home
  • This Issue
  • Next Article
    B2C online ride-hailing pricing and service optimization under competitions
doi: 10.3934/jimo.2021089
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Pricing and coordination of competitive recycling and remanufacturing supply chain considering the quality of recycled products

1. 

Key Laboratory of Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

2. 

Hubei Provincial Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

* Corresponding author: Xuhui Xia

Received  November 2020 Revised  February 2021 Early access April 2021

Fund Project: This research was supported by the National Natural Science Foundation of China (No. 51805385) and Natural Science Foundation of Hubei Province (No. 2018CFB265)

Considering the quality of recycled products, we develop a game model of a multi-level competitive recycling and remanufacturing supply chain with two manufacturers and multiple recyclers. Being focus on two mainstream game models, namely the manufacturer-recycler cooperation game model and the manufacturer-led Stackelberg game model, we explore the connection between optimal pricing decisions and performance levels of the supply chain members. Although researches indicate that the quality of recycled products will not affect the pricing decisions in the forward supply chain, it is positively related to the recycling price, the repurchase price, and the overall profit in the reverse supply chain, and the intensity of competition among manufacturers or recycled products will affect the pricing decisions and the performance levels of the two models. In the manufacturer-led Stackelberg game model, the supply chain does not reach the Pareto optimum, which uses the recycling cost sharing contract to achieve the coordination. Afterwards, the profits of the two manufacturers and multiple recyclers in the supply chain are increased, and the overall profit of the supply chain system is higher than that of the manufacturer-led Stackelberg game model. Finally, numerical analysis is conducted to verify the proposed coordination mechanism and its effectiveness.

Citation: Yanhua Feng, Xuhui Xia, Lei Wang, Zelin Zhang. Pricing and coordination of competitive recycling and remanufacturing supply chain considering the quality of recycled products. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021089
References:
[1]

M. Abbas, K. Devika, E. H. Rebort et al., Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, J. Clean. Prod., 249 (2020), 119383. Google Scholar

[2]

M. Arshad, Q. S. Khalid, J. Lloret et al., An efficient approach for coordination of dual-channel closed-loop supply chain management, Sustainability, 10 (2018), 3433. doi: 10.3390/su10103433.  Google Scholar

[3]

R. BhattacharyaA. Kaur and R. K. Amit, Price optimization of multi-stage remanufacturing in a closed loop supply chain, J. Clean. Prod., 186 (2018), 943-962.  doi: 10.1016/j.jclepro.2018.02.222.  Google Scholar

[4]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturing stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[5]

Q. W. DengS. M. Guo and Q. H. Ren et al., Research of policy on competitive closed-loop supply chain based on quality uncertainty, Ind. Techno. Econ., 36 (2017), 137-146.   Google Scholar

[6]

B. C. GiriA. Chakraborty and T. Maiti, Pricing and return product collection decisions in closed-loop supply chain with dual-channel in both forward and reverse logistics, J. Manuf. Syst., 42 (2017), 104-123.  doi: 10.1016/j.jmsy.2016.11.007.  Google Scholar

[7]

B. C. GiriC. Mondal and T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain with retailer variable markup, RAIRO-Oper. Res., 53 (2019), 609-626.  doi: 10.1051/ro/2017061.  Google Scholar

[8]

A. Goli, E. B. Tirkolaee and G. W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Oper. Manag. Recycl. Reuse, (2020), 99-124. Google Scholar

[9]

Q. Gu and T. Gao, Management of two competitive closed-loop supply chains, Int. J. Sustain. Eng., 5 (2012), 325-337.  doi: 10.1080/19397038.2012.718808.  Google Scholar

[10]

V. D. R. Guide and J. Li, The potential for cannibalization of new products sales by remanufactured products, Dec. Sci., 41 (2010), 547-572.  doi: 10.1111/j.1540-5915.2010.00280.x.  Google Scholar

[11]

X. H. Han and S. J. Xue, Reverse channel decisions for competition closed-loop supply chain based on evolutionary game, Comput. Interg. Manuf. Syst., 16 (2010), 1487-1493.   Google Scholar

[12]

C. HeX. F. Song and C. H. Feng, Research on double contracts selection with recyclers' competition of closed-loop supply chain based on multi-agent model, Chinese J. Manag. Sci., 23 (2015), 75-83.   Google Scholar

[13]

Q. HeN. Wang and Z. Yang et al., Competitive collection under channel inconvenience in closed-loop supply chain, European J. Oper. Res., 275 (2019), 155-166.  doi: 10.1016/j.ejor.2018.11.034.  Google Scholar

[14]

J. HeydariK. Govindan and R. Sadeghi, Reverse supply chain coordination under stochastic remanufacturing capacity, Int. J. Prod. Econo., 202 (2018), 1-11.  doi: 10.1016/j.ijpe.2018.04.024.  Google Scholar

[15]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, Eur. J. Oper. Res., 205 (2010), 113-126.   Google Scholar

[16]

S. K. Jena and and S. P. Sarmah, Price competition and cooperation in a duopoly closed-loop supply chain, Int. J. Prod. Econ., 156 (2014), 346-360.   Google Scholar

[17]

J. JiZ. Zhang and L. Yang, Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers' preference, J. Clean. Prod., 141 (2017), 852-867.  doi: 10.1016/j.jclepro.2016.09.135.  Google Scholar

[18]

Y. Jing and C. Z. Li, Pricing strategy of recycling and remanufacturing under the corporate social responsibility, Comput. Interg. Manuf. Syst., 25 (2019), 256-266.   Google Scholar

[19]

D. R. Liu, Research on products pricing non-cooperative game methods of supply chain considering service level, J. Zhengzhou Univ. Aero., 38 (2020), 73-84.   Google Scholar

[20]

W. J. LiuN. N. Shen and J. Zhang et al., Optimal pricing for remanufacturing closed-loop supply chain under different channel power structures and product dua differentiation, Ind. Eng. J., 21 (2018), 54-63.   Google Scholar

[21]

Z. MaA. Prasad and S. P. Sethi, Strategic remanufacturing under competition, Rev. Mark. Sci., 16 (2018), 85-107.  doi: 10.1515/roms-2019-0019.  Google Scholar

[22]

Y. Z. Mehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, Int. J. Sup. Oper. Manag., 6 (2019), 360-388.   Google Scholar

[23]

S. Mitra, Models to explore remanufacturing as a competitive strategy under duopoly, Omega, 59 (2016), 215-227.  doi: 10.1016/j.omega.2015.06.009.  Google Scholar

[24]

J. J. Nie and L. Zhong, A research on the remanufacturing models with green customers, Ind. Eng. J., 21 (2018), 9-18.   Google Scholar

[25]

S. Panda and M. M. Nikunja, Coordinating a socially responsible closed -loop supply chain with product recycling, Int. J. Prod. Econ., 188 (2017), 11-21.   Google Scholar

[26]

S. Rahman and N. Subramanian, Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., 140 (2012), 239-248.  doi: 10.1016/j.ijpe.2011.07.019.  Google Scholar

[27]

R. C. Savaskan and L. N. V. Wassenhove, Reverse channel design: The case of competing retailers, Manag. Sci., 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[28]

C. R. ShenZ. K. Xiong and Z. Q. Peng, Decision and coordination research for remanufacturing closed-loop supply chain under patent protection and government subsidies, Ind. Eng. Manag., 27 (2013), 132-137.   Google Scholar

[29]

C. Su, X. Liu and W. Du, Green supply chain decisions considering consumers' low-carbon awareness under different government subsidies, Sustainability, 12 (2020), 2281. doi: 10.3390/su12062281.  Google Scholar

[30]

E. B. Tirkolaee, P. Abbasian and G. W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Sci. Tot. Env., 756 (2021), 143607. Google Scholar

[31]

N. Wan and D. Hong, The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels, J. Clean. Prod., 224 (2019), 881-891.  doi: 10.1016/j.jclepro.2019.03.274.  Google Scholar

[32]

W. B. WangQ. Chen and Q. L. Da, Decision and analysis of closed-loop supply chain with manufacturer-led and manufacturer-compete based on the reward-penalty mechanism, Chinese J. Manag. Sci., 21 (2013), 57-63.   Google Scholar

[33]

J. WangZ. Zhou and M. Yu, Pricing models in a sustainable supply chain with capacity constraint, J. Clean. Prod., 222 (2019), 57-76.  doi: 10.1016/j.jclepro.2019.01.319.  Google Scholar

[34]

J. WeiK. Govindan and Y. Li et al., Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information, Comput. Oper. Res., 54 (2015), 257-265.  doi: 10.1016/j.cor.2013.11.021.  Google Scholar

[35]

H. Y. Wu and X. H. Han, Production decisions in manufacturer competing closed-loop supply chains under remanufacturing costs disruptions scenarios, Comput. Interg. Manuf. Syst., 22 (2016), 1129-1138.   Google Scholar

[36]

L. Wu, L. Liu and Z. Wang, Competitive remanufacturing and pricing strategy with contrast effect and assimilation effect, J. Clean. Prod., 257 (2020), 120333. doi: 10.1016/j. jclepro. 2020.120333.  Google Scholar

[37]

M. Z. Xu and F. Tang, Coordination mechanism of dual-channel closed-loop supply chain based on third-party collection, Comput. Interg. Manuf. Syst., 19 (2013), 2083-2089.   Google Scholar

[38]

A.-T. Yang and L.-D. Zhao, Supply chain network equilibrium with revenue sharing contract under demand disruptions, Int. J. Aut. Comput., 8 (2011), 177-184.  doi: 10.1007/s11633-011-0571-7.  Google Scholar

[39]

F. M. Yao and C. X. Teng, Decision and coordination for competitive closed-loop supply chains with third-party collector dominated by a retailer, J. Syst. Eng., 34 (2019), 93-101.   Google Scholar

[40]

A. Yenipazarli, Managing new and remanufactured products to mitigate environmental damage under emissions regulation, European J. Oper. Res., 249 (2016), 117-130.  doi: 10.1016/j.ejor.2015.08.020.  Google Scholar

[41]

Y. Y. Yi and J. M. Liang, Coordination of remanufacturing closed-loop supply chain under premium and penalty mechanism, Comput. Interg. Manuf. Syst., 19 (2013), 841-849.   Google Scholar

[42]

K. F. Yuan, G. Q. Wu, H. Dong et al., Differential pricing and emission reduction in remanufacturing supply chains with dual-sale channels under CCT-mechanism, Sustainability, 12 (2020), 8150. Google Scholar

[43]

Y. J. Zhang, C. X. Guo and L. C. Wang, Supply chain strategy analysis of low carbon subsidy policies based on carbon trading, Sustainability, 12 (2020), 3532. Google Scholar

[44]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.  Google Scholar

[45]

J. ZhaoJ. Wei and M. Li, Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain, J. Clean. Prod., 167 (2017), 530-544.  doi: 10.1016/j.jclepro.2017.07.254.  Google Scholar

show all references

References:
[1]

M. Abbas, K. Devika, E. H. Rebort et al., Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research, J. Clean. Prod., 249 (2020), 119383. Google Scholar

[2]

M. Arshad, Q. S. Khalid, J. Lloret et al., An efficient approach for coordination of dual-channel closed-loop supply chain management, Sustainability, 10 (2018), 3433. doi: 10.3390/su10103433.  Google Scholar

[3]

R. BhattacharyaA. Kaur and R. K. Amit, Price optimization of multi-stage remanufacturing in a closed loop supply chain, J. Clean. Prod., 186 (2018), 943-962.  doi: 10.1016/j.jclepro.2018.02.222.  Google Scholar

[4]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturing stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[5]

Q. W. DengS. M. Guo and Q. H. Ren et al., Research of policy on competitive closed-loop supply chain based on quality uncertainty, Ind. Techno. Econ., 36 (2017), 137-146.   Google Scholar

[6]

B. C. GiriA. Chakraborty and T. Maiti, Pricing and return product collection decisions in closed-loop supply chain with dual-channel in both forward and reverse logistics, J. Manuf. Syst., 42 (2017), 104-123.  doi: 10.1016/j.jmsy.2016.11.007.  Google Scholar

[7]

B. C. GiriC. Mondal and T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain with retailer variable markup, RAIRO-Oper. Res., 53 (2019), 609-626.  doi: 10.1051/ro/2017061.  Google Scholar

[8]

A. Goli, E. B. Tirkolaee and G. W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Oper. Manag. Recycl. Reuse, (2020), 99-124. Google Scholar

[9]

Q. Gu and T. Gao, Management of two competitive closed-loop supply chains, Int. J. Sustain. Eng., 5 (2012), 325-337.  doi: 10.1080/19397038.2012.718808.  Google Scholar

[10]

V. D. R. Guide and J. Li, The potential for cannibalization of new products sales by remanufactured products, Dec. Sci., 41 (2010), 547-572.  doi: 10.1111/j.1540-5915.2010.00280.x.  Google Scholar

[11]

X. H. Han and S. J. Xue, Reverse channel decisions for competition closed-loop supply chain based on evolutionary game, Comput. Interg. Manuf. Syst., 16 (2010), 1487-1493.   Google Scholar

[12]

C. HeX. F. Song and C. H. Feng, Research on double contracts selection with recyclers' competition of closed-loop supply chain based on multi-agent model, Chinese J. Manag. Sci., 23 (2015), 75-83.   Google Scholar

[13]

Q. HeN. Wang and Z. Yang et al., Competitive collection under channel inconvenience in closed-loop supply chain, European J. Oper. Res., 275 (2019), 155-166.  doi: 10.1016/j.ejor.2018.11.034.  Google Scholar

[14]

J. HeydariK. Govindan and R. Sadeghi, Reverse supply chain coordination under stochastic remanufacturing capacity, Int. J. Prod. Econo., 202 (2018), 1-11.  doi: 10.1016/j.ijpe.2018.04.024.  Google Scholar

[15]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, Eur. J. Oper. Res., 205 (2010), 113-126.   Google Scholar

[16]

S. K. Jena and and S. P. Sarmah, Price competition and cooperation in a duopoly closed-loop supply chain, Int. J. Prod. Econ., 156 (2014), 346-360.   Google Scholar

[17]

J. JiZ. Zhang and L. Yang, Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers' preference, J. Clean. Prod., 141 (2017), 852-867.  doi: 10.1016/j.jclepro.2016.09.135.  Google Scholar

[18]

Y. Jing and C. Z. Li, Pricing strategy of recycling and remanufacturing under the corporate social responsibility, Comput. Interg. Manuf. Syst., 25 (2019), 256-266.   Google Scholar

[19]

D. R. Liu, Research on products pricing non-cooperative game methods of supply chain considering service level, J. Zhengzhou Univ. Aero., 38 (2020), 73-84.   Google Scholar

[20]

W. J. LiuN. N. Shen and J. Zhang et al., Optimal pricing for remanufacturing closed-loop supply chain under different channel power structures and product dua differentiation, Ind. Eng. J., 21 (2018), 54-63.   Google Scholar

[21]

Z. MaA. Prasad and S. P. Sethi, Strategic remanufacturing under competition, Rev. Mark. Sci., 16 (2018), 85-107.  doi: 10.1515/roms-2019-0019.  Google Scholar

[22]

Y. Z. Mehrjerdi and R. Lotfi, Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework, Int. J. Sup. Oper. Manag., 6 (2019), 360-388.   Google Scholar

[23]

S. Mitra, Models to explore remanufacturing as a competitive strategy under duopoly, Omega, 59 (2016), 215-227.  doi: 10.1016/j.omega.2015.06.009.  Google Scholar

[24]

J. J. Nie and L. Zhong, A research on the remanufacturing models with green customers, Ind. Eng. J., 21 (2018), 9-18.   Google Scholar

[25]

S. Panda and M. M. Nikunja, Coordinating a socially responsible closed -loop supply chain with product recycling, Int. J. Prod. Econ., 188 (2017), 11-21.   Google Scholar

[26]

S. Rahman and N. Subramanian, Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., 140 (2012), 239-248.  doi: 10.1016/j.ijpe.2011.07.019.  Google Scholar

[27]

R. C. Savaskan and L. N. V. Wassenhove, Reverse channel design: The case of competing retailers, Manag. Sci., 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[28]

C. R. ShenZ. K. Xiong and Z. Q. Peng, Decision and coordination research for remanufacturing closed-loop supply chain under patent protection and government subsidies, Ind. Eng. Manag., 27 (2013), 132-137.   Google Scholar

[29]

C. Su, X. Liu and W. Du, Green supply chain decisions considering consumers' low-carbon awareness under different government subsidies, Sustainability, 12 (2020), 2281. doi: 10.3390/su12062281.  Google Scholar

[30]

E. B. Tirkolaee, P. Abbasian and G. W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Sci. Tot. Env., 756 (2021), 143607. Google Scholar

[31]

N. Wan and D. Hong, The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels, J. Clean. Prod., 224 (2019), 881-891.  doi: 10.1016/j.jclepro.2019.03.274.  Google Scholar

[32]

W. B. WangQ. Chen and Q. L. Da, Decision and analysis of closed-loop supply chain with manufacturer-led and manufacturer-compete based on the reward-penalty mechanism, Chinese J. Manag. Sci., 21 (2013), 57-63.   Google Scholar

[33]

J. WangZ. Zhou and M. Yu, Pricing models in a sustainable supply chain with capacity constraint, J. Clean. Prod., 222 (2019), 57-76.  doi: 10.1016/j.jclepro.2019.01.319.  Google Scholar

[34]

J. WeiK. Govindan and Y. Li et al., Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information, Comput. Oper. Res., 54 (2015), 257-265.  doi: 10.1016/j.cor.2013.11.021.  Google Scholar

[35]

H. Y. Wu and X. H. Han, Production decisions in manufacturer competing closed-loop supply chains under remanufacturing costs disruptions scenarios, Comput. Interg. Manuf. Syst., 22 (2016), 1129-1138.   Google Scholar

[36]

L. Wu, L. Liu and Z. Wang, Competitive remanufacturing and pricing strategy with contrast effect and assimilation effect, J. Clean. Prod., 257 (2020), 120333. doi: 10.1016/j. jclepro. 2020.120333.  Google Scholar

[37]

M. Z. Xu and F. Tang, Coordination mechanism of dual-channel closed-loop supply chain based on third-party collection, Comput. Interg. Manuf. Syst., 19 (2013), 2083-2089.   Google Scholar

[38]

A.-T. Yang and L.-D. Zhao, Supply chain network equilibrium with revenue sharing contract under demand disruptions, Int. J. Aut. Comput., 8 (2011), 177-184.  doi: 10.1007/s11633-011-0571-7.  Google Scholar

[39]

F. M. Yao and C. X. Teng, Decision and coordination for competitive closed-loop supply chains with third-party collector dominated by a retailer, J. Syst. Eng., 34 (2019), 93-101.   Google Scholar

[40]

A. Yenipazarli, Managing new and remanufactured products to mitigate environmental damage under emissions regulation, European J. Oper. Res., 249 (2016), 117-130.  doi: 10.1016/j.ejor.2015.08.020.  Google Scholar

[41]

Y. Y. Yi and J. M. Liang, Coordination of remanufacturing closed-loop supply chain under premium and penalty mechanism, Comput. Interg. Manuf. Syst., 19 (2013), 841-849.   Google Scholar

[42]

K. F. Yuan, G. Q. Wu, H. Dong et al., Differential pricing and emission reduction in remanufacturing supply chains with dual-sale channels under CCT-mechanism, Sustainability, 12 (2020), 8150. Google Scholar

[43]

Y. J. Zhang, C. X. Guo and L. C. Wang, Supply chain strategy analysis of low carbon subsidy policies based on carbon trading, Sustainability, 12 (2020), 3532. Google Scholar

[44]

L. ZhangJ. Wang and J. You, Consumer environmental awareness and channel coordination with two substitutable products, European J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.  Google Scholar

[45]

J. ZhaoJ. Wei and M. Li, Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain, J. Clean. Prod., 167 (2017), 530-544.  doi: 10.1016/j.jclepro.2017.07.254.  Google Scholar

Figure 1.  System architecture of the recycling and remanufacturing supply chain
Figure 2.  The impact of $ \lambda $ on manufacturer's sale price
Figure 3.  The impact of $ \lambda $ on market demand
Figure 4.  The impact of $ \lambda $ on profits
Figure 5.  The impact of $ \kappa $ on $ b_{m}^{MRC} $ and $ b_{m}^{MS} $
Figure 6.  The impact of $ \kappa $ on $ \eta_{m}^{MS} $
Figure 7.  The impact of $ \kappa $ on $ f_{R}^{MS} $
Figure 8.  The impact of $ \kappa $ on $ f^{MRC} $
Figure 9.  The impact of $ \kappa $ on $ f^{ MS} $
Figure 10.  The impact of κ on f1MS
Figure 11.  The impact of κ on f2MS
Figure 12.  The impact of $ \lambda $ and $ \kappa $ on $ f^{ MRC} $
Figure 13.  The impact of $ \lambda $ and $ \kappa $ on $ f^{ MS} $
Figure 14.  The impact of $ \sigma $ on $ b_{m}^{MRC} $ and $ b_{m}^{MS} $
Figure 15.  The impact of $ \sigma $ on $ \eta_{m}^{MS} $
Figure 16.  The impact of $ \sigma $ on profits
Figure 17.  The impact of θ on f1MST
Figure 18.  The impact of θ on f2MST
Figure 19.  The impact of $ \theta $ on $ f_{R}^{MST} $
Table 1.  Indices
m Manufacturer (m=1, 2)
r Recycler (r=1, 2, 3, ...R)
m Manufacturer (m=1, 2)
r Recycler (r=1, 2, 3, ...R)
Table 2.  Decision variables
$ p_{m} $ The unit sale price for new and remanufactured products of manufacturer m
$ b_{m} $ The unit recycling price specified by the recycler for the used products needed by the manufacturer m
$ \eta_{m} $ The unit price at which manufacturer m repurchases used products from recyclers
$ p_{m} $ The unit sale price for new and remanufactured products of manufacturer m
$ b_{m} $ The unit recycling price specified by the recycler for the used products needed by the manufacturer m
$ \eta_{m} $ The unit price at which manufacturer m repurchases used products from recyclers
Table 3.  Definition of Parameters
$\textit{R}$ Number of recyclers
$ c_{mn} $ The unit cost required by the manufacturer m to manufacture a new product
$ c_{mz} $ The unit cost required for manufacturer m to remanufacture the product
$ \omega_{m} $ Manufacturer m uses the used products for remanufacturing cost savings
$ \sigma $ Remanufacturing ratio of recycled used products. It reflects the quality of recycled used products, 0$ \leq $$ \sigma $$ \leq $1
$\textit{s}$ The government subsidies for recycler to recycle every unit of used products
$ c_{d} $ The unit cost for recyclers to dispose of used products
$ c_{q} $ The unit cost for recyclers to dispose of other used products that cannot be used for remanufacturing
$ \delta_{r} $ Economies of market scale for recyclers r, 0 < $ \delta_{r} < $1
$ \lambda $ The intensity of competition between two manufacturers that can replace new products, 0 < $ \lambda < $1, competition, the more intense the competition among manufacturers.
$ \mu $ Market capacity, $ \mu > $0
$ \psi $ When the recycling price is zero, the number of used products voluntarily returned by the consumer market which reflect consumers' environmental awareness, $ \psi > $0
$ \kappa $ The intensity of recycling competition between two used products, 0 < $ \kappa < $1
$\textit{R}$ Number of recyclers
$ c_{mn} $ The unit cost required by the manufacturer m to manufacture a new product
$ c_{mz} $ The unit cost required for manufacturer m to remanufacture the product
$ \omega_{m} $ Manufacturer m uses the used products for remanufacturing cost savings
$ \sigma $ Remanufacturing ratio of recycled used products. It reflects the quality of recycled used products, 0$ \leq $$ \sigma $$ \leq $1
$\textit{s}$ The government subsidies for recycler to recycle every unit of used products
$ c_{d} $ The unit cost for recyclers to dispose of used products
$ c_{q} $ The unit cost for recyclers to dispose of other used products that cannot be used for remanufacturing
$ \delta_{r} $ Economies of market scale for recyclers r, 0 < $ \delta_{r} < $1
$ \lambda $ The intensity of competition between two manufacturers that can replace new products, 0 < $ \lambda < $1, competition, the more intense the competition among manufacturers.
$ \mu $ Market capacity, $ \mu > $0
$ \psi $ When the recycling price is zero, the number of used products voluntarily returned by the consumer market which reflect consumers' environmental awareness, $ \psi > $0
$ \kappa $ The intensity of recycling competition between two used products, 0 < $ \kappa < $1
Table 4.  The main parameter values
$ R $ $ S $ $ c_{d} $ $ c_{q} $ $ \delta_{1} $ $ \delta_{2} $ $ \delta_{3} $ $ \mu $
3 2 2 3 0.1 0.2 0.3 150
$ c_{1n} $ $ c_{1z} $ $ \omega_{1} $ $ c_{2n} $ $ c_{2z} $ $ \omega_{2} $ $ \psi $
40 15 25 30 15 20 3
$ R $ $ S $ $ c_{d} $ $ c_{q} $ $ \delta_{1} $ $ \delta_{2} $ $ \delta_{3} $ $ \mu $
3 2 2 3 0.1 0.2 0.3 150
$ c_{1n} $ $ c_{1z} $ $ \omega_{1} $ $ c_{2n} $ $ c_{2z} $ $ \omega_{2} $ $ \psi $
40 15 25 30 15 20 3
Table 5.  The optimal solutions in the MRC model and the MS model before the coordination mechanism is adopted
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MRC 145 140 9.35 6.87 - - - - - 14371
MS 118 114 2.79 1.71 11.71 9.52 6207 7072 157 13436
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MRC 145 140 9.35 6.87 - - - - - 14371
MS 118 114 2.79 1.71 11.71 9.52 6207 7072 157 13436
Table 6.  The optimal solution under the coordination mechanism
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MS model 117.7 114 2.8 1.7 11.7 9.5 6207 7072 157 13436
Coordination1 mechanism1 117.7 114 9.35 6.87 10.45 8.45 6241 7099 206 13546
Coordination2 1mechanism2 117.7 114 9.35 6.87 9.24 7.49 6257 7109 180 13546
Decision variables $ p_{1} $ $ p_{2} $ $ b_{1} $ $ b_{2} $ $ \eta_{1} $ $ \eta_{2} $ $ f_{1} $ $ f_{2} $ $ f_{R} $ $ f $
MS model 117.7 114 2.8 1.7 11.7 9.5 6207 7072 157 13436
Coordination1 mechanism1 117.7 114 9.35 6.87 10.45 8.45 6241 7099 206 13546
Coordination2 1mechanism2 117.7 114 9.35 6.87 9.24 7.49 6257 7109 180 13546
[1]

Bin Chen, Wenying Xie, Fuyou Huang, Juan He. Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2903-2924. doi: 10.3934/jimo.2020100

[2]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[3]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[4]

Fuyou Huang, Juan He, Jian Wang. Coordination of VMI supply chain with a loss-averse manufacturer under quality-dependency and marketing-dependency. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1753-1772. doi: 10.3934/jimo.2018121

[5]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[6]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[7]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[8]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[9]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[10]

Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021117

[11]

Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116

[12]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial & Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[13]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[14]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1485-1504. doi: 10.3934/jimo.2020031

[15]

Wei Chen, Fuying Jing, Li Zhong. Coordination strategy for a dual-channel electricity supply chain with sustainability. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021139

[16]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[17]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[18]

Wenying Xie, Bin Chen, Fuyou Huang, Juan He. Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3393-3415. doi: 10.3934/jimo.2020125

[19]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[20]

Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial & Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]