Proposed Alg. | ||||
Thong Alg. (1) | ||||
Thong Alg. (2) | ||||
Thong Alg. (3) | ||||
Gibali Alg. |
In this paper, we propose a new inertial Tseng's extragradient iterative algorithm for solving variational inequality problems of pseudo-monotone and non-Lipschitz operator in real Hilbert spaces. We prove that the sequence generated by proposed algorithm converges strongly to an element of solutions of variational inequality problem under some suitable assumptions imposed on the parameters. Finally, we give some numerical experiments for supporting our main results. The main results obtained in this paper extend and improve some related works in the literature.
Citation: |
Table 1. Methods Parameters Choice for Comparison
Proposed Alg. | ||||
Thong Alg. (1) | ||||
Thong Alg. (2) | ||||
Thong Alg. (3) | ||||
Gibali Alg. |
Table 2.
Example 1: Comparison among methods with different values of
Iter. | Time | Iter. | Time | Iter. | Time | Iter. | Time | |
Proposed Alg. | 3 | 1.3843 | 3 | 1.7672 | 3 | 1.7564 | 4 | 2.2017 |
Thong Alg. (1) | 76 | 1.2902 | 139 | 2.7111 | 111 | 2.1715 | 232 | 37.7743 |
Thong Alg. (2) | 2136 | 36.6812 | 1561 | 30.7776 | 1370 | 31.8672 | 1160 | 4.0453 |
Thong Alg. (3) | 86 | 1.1655 | 152 | 2.3615 | 148 | 2.4878 | 178 | 29.0789 |
Gibali Alg. | 150 | 12.0085 | 235 | 20.3243 | 319 | 41.0421 | 315 | 4.2520 |
Iter. | Time | Iter. | Time | Iter. | Time | Iter. | Time | |
Proposed Alg. | 3 | 1.3819 | 3 | 1.7834 | 3 | 1.6555 | 3 | 1.7517 |
Thong Alg. (1) | 72 | 1.1548 | 142 | 2.6436 | 136 | 2.888 | 207 | 4.4416 |
Thong Alg. (2) | 1771 | 30.2921 | 1325 | 28.4023 | 1132 | 28.6053 | 920 | 26.5714 |
Thong Alg. (3) | 101 | 1.5058 | 90 | 1.4923 | 156 | 2.9515 | 162 | 3.6149 |
Gibali Alg. | 203 | 17.1568 | 255 | 30.849 | 282 | 31.6244 | 303 | 35.2953 |
Table 3.
Example 1 Comparison: Proposed Alg. with different values
|
|||||
No. of Iterations | 3 | 3 | 3 | 3 | |
CPU (Time) | 1.6337 | 1.4830 | 1.4773 | 1.3843 | |
No. of Iterations | 3 | 3 | 4 | 3 | |
CPU (Time) | 1.4606 | 1.4876 | 2.3980 | 1.7672 | |
No. of Iterations | 4 | 5 | 4 | 3 | |
CPU (Time) | 1.8664 | 0.85257 | 1.7597 | 1.7564 | |
No. of Iterations | 4 | 3 | 4 | 4 | |
CPU (Time) | 1.6573 | 1.5935 | 1.8008 | 2.2017 | |
No. of Iterations | 3 | 3 | 3 | 3 | |
CPU (Time) | 1.3060 | 1.3376 | 1.4359 | 1.3819 | |
No. of Iterations | 3 | 4 | 3 | 3 | |
CPU (Time) | 1.4630 | 1.7306 | 1.5115 | 1.7834 | |
No. of Iterations | 4 | 3 | 4 | 3 | |
CPU (Time) | 1.7102 | 1.6399 | 1.7931 | 1.6555 | |
No. of Iterations | 5 | 3 | 4 | 3 | |
CPU (Time) | 2.7099 | 1.6589 | 2.3287 | 1.7517 |
Table 4.
Example 1 Comparison: Proposed Alg. with different values
|
|||||
No. of Iterations | 3 | 3 | 4 | 3 | |
CPU (Time) | 1.4409 | 1.4632 | 2.6888 | 1.3843 | |
No. of Iterations | 3 | 3 | 3 | 3 | |
CPU (Time) | 1.5248 | 1.4840 | 1.5217 | 1.7672 | |
No. of Iterations | 4 | 3 | 5 | 3 | |
CPU (Time) | 1.9571 | 1.5852 | 1.9322 | 1.7564 | |
No. of Iterations | 6 | 4 | 5 | 4 | |
CPU (Time) | 3.0365 | 1.8605 | 2.0718 | 2.2017 | |
No. of Iterations | 3 | 3 | 3 | 3 | |
CPU (Time) | 1.3524 | 1.3416 | 1.3648 | 1.3819 | |
No. of Iterations | 3 | 3 | 4 | 3 | |
CPU (Time) | 1.5265 | 1.5336 | 1.6929 | 1.7834 | |
No. of Iterations | 5 | 5 | 3 | 3 | |
CPU (Time) | 2.9525 | 2.0816 | 1.6424 | 1.6555 | |
No. of Iterations | 3 | 4 | 8 | 3 | |
CPU (Time) | 1.6958 | 2.0833 | 4.5199 | 1.7517 |
Table 5. Methods Parameters Choice for Comparison
Proposed Alg. | ||||||
Gibali Alg. |
Table 6. Example 2: Prop. Alg. vs Gibali Alg. (Unaccel. Alg.)
No. of Iterations | CPU Time | ||||
Prop. Alg. | Gibali Alg. | Prop. Alg. | Gibali Alg. | ||
Case I | 17 | 1712 | 0.001243 | 0.1244 | |
Case II | 17 | 1708 | 0.001518 | 0.1248 | |
Case III | 17 | 1713 | 0.001261 | 0.1276 | |
Case IV | 17 | 1729 | 0.001202 | 0.1297 | |
Case V | 17 | 1715 | 0.001272 | 0.1258 | |
Case VI | 18 | 1835 | 0.001339 | 0.1564 |
Table 7.
Example 2 Comparison: Proposed Alg. with different values
Case I | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011992 | 0.0012179 | 0.0013264 | 0.0012430 | |
Case II | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011457 | 0.0011586 | 0.0015604 | 0.0015181 | |
Case III | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011386 | 0.0014248 | 0.0012852 | 0.0012606 | |
Case IV | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0010843 | 0.0010928 | 0.0011176 | 0.0012022 | |
Case V | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0012491 | 0.0011169 | 0.0012293 | 0.0012719 | |
Case VI | No. of Iterations | 18 | 18 | 18 | 18 |
CPU (Time) | 0.0012431 | 0.0013496 | 0.0011613 | 0.0013392 |
Table 8.
Example 2 Comparison: Proposed Alg. with different values
Case I | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0013518 | 0.0012097 | 0.0011754 | 0.0012430 | |
Case II | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0012701 | 0.0011233 | 0.0012382 | 0.0015181 | |
Case III | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011386 | 0.0014248 | 0.0012852 | 0.0012606 | |
Case IV | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011530 | 0.0013917 | 0.0015395 | 0.0012022 | |
Case V | No. of Iterations | 17 | 17 | 17 | 17 |
CPU (Time) | 0.0011413 | 0.0011319 | 0.0011286 | 0.0012719 | |
Case VI | No. of Iterations | 17 | 17 | 18 | 18 |
CPU (Time) | 0.0011094 | 0.0011839 | 0.0013550 | 0.0013392 |
[1] | T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, 70 (2021), 545-574. doi: 10.1080/02331934.2020.1723586. |
[2] | F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set. Valued Anal., 9 (2001), 3-11. doi: 10.1023/A:1011253113155. |
[3] | F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773-782. doi: 10.1137/S1052623403427859. |
[4] | C. Baiocchi and A. Capelo, Variational and quasivariational inequalities: Applications to free boundary problems, Wiley, New York, 1984. |
[5] | R. I. Bǫt, E. R. Csetnek and A. Heinrich, A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators, SIAM J. Optim., 23 (2013), 2011-2036. doi: 10.1137/12088255X. |
[6] | R. I. Bǫt and C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim., 23 (2013), 2541-2565. doi: 10.1137/120901106. |
[7] | R. I. Bǫt, E. R. Csetnek, A. Heinrich and C. Hendrich, On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems, Math. Program., 150 (2015), 251-279. doi: 10.1007/s10107-014-0766-0. |
[8] | R. I. Bǫt, E. R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487. doi: 10.1016/j.amc.2015.01.017. |
[9] | R. I. Bǫt and E. R. Csetnek, An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems, J. Optim. Theory Appl., 171 (2016), 600-616. doi: 10.1007/s10957-015-0730-z. |
[10] | R. I. Bǫt, E. R. Csetnek and P. T. Vuong, The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces, European J. Oper. Res., 287 (2020), 49-60. doi: 10.1016/j.ejor.2020.04.035. |
[11] | Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335. doi: 10.1007/s10957-010-9757-3. |
[12] | Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2011), 1119-1132. doi: 10.1080/02331934.2010.539689. |
[13] | Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 56 (2012), 301-323. doi: 10.1007/s11075-011-9490-5. |
[14] | R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281-295. doi: 10.1007/BF00941468. |
[15] | S. V. Denisov, V. V. Semenov and L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757-765. doi: 10.1007/s10559-015-9768-z. |
[16] | Q. L. Dong, Y. J. Cho, L. L. Zhong and Th. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687-704. doi: 10.1007/s10898-017-0506-0. |
[17] | Q. L. Dong, H. B.Yuan, Y. J. Cho and Th. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12 (2018), 87-102. doi: 10.1007/s11590-016-1102-9. |
[18] | Q.-L. Dong, K. R. Kazmi, R. Ali and X.-H. Li, Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems, J. Fixed Point Theory Appl., 21 (2019), 57. doi: 10.1007/s11784-019-0699-6. |
[19] | F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, vol. II. Springer, New York, 2003. |
[20] | A. Gibali, D. V. Thong and P. A. Tuan, Two simple projection-type methods for solving variational inequalities, Anal. Math. Phys., 9 (2019), 2203-2225. doi: 10.1007/s13324-019-00330-w. |
[21] | R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Elsevier, Amsterdam, 1981. |
[22] | K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984. |
[23] | P. T. Harker and J.-S. Pang, A damped-newton method for the linear complementarity problem, Lect. Appl. Math., 26 (1990), 265-284. doi: 10.1007/bf01582255. |
[24] | X. Hu and J. Wang, Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network, IEEE Trans. Neural Netw., 17 (2006), 1487-1499. |
[25] | A. N. Iusem, An iterative algorithm for the variational inequality problem, Mat. Apl. Comput., 13 (1994), 103-114. |
[26] | A. Iusem and R. Gárciga Otero, Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces, Numer. Funct. Anal. Optim., 22 (2001), 609-640. doi: 10.1081/NFA-100105310. |
[27] | C. Izuchukwu, A. A. Mebawondu and O. T. Mewomo, A new method for solving split variational inequality problem without co-coerciveness, J. Fixed Point Theory Appl., 22 (2020), 98. doi: 10.1007/s11784-020-00834-0. |
[28] | L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods, J. Optim. Theory Appl., 185 (2020), 744-766. doi: 10.1007/s10957-020-01672-3. |
[29] | L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (2020), 38. doi: 10.1007/s40314-019-1014-2. |
[30] | L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization, 70 (2021), 387-412. doi: 10.1080/02331934.2020.1716752. |
[31] | G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in refelexive Banach spaces, SIAM J. Optim., 21 (2011), 1319-1344. doi: 10.1137/110820002. |
[32] | D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. |
[33] | I. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001. doi: 10.1007/978-3-642-56886-2. |
[34] | G. M. Korpelevič, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody, 12 (1976), 747-756. |
[35] | P.-E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515. doi: 10.1137/060675319. |
[36] | P.-E. Maingé, Convergence theorem for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236. doi: 10.1016/j.cam.2007.07.021. |
[37] | Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520. doi: 10.1137/14097238X. |
[38] | Y. V. Malitsky and V. V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61 (2015), 193-202. doi: 10.1007/s10898-014-0150-x. |
[39] | Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19 (2017), 2483-2510. doi: 10.1007/s11784-017-0435-z. |
[40] | Y. Shehu, O. S. Iyiola and F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: Applications to compressed sensing, Numer Algorithms, 83 (2020), 1321-1347. doi: 10.1007/s11075-019-00727-5. |
[41] | Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 56 (2019), 4. doi: 10.1007/s10092-018-0300-5. |
[42] | Y. Shuhu, Q.-L. Dong and D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68 (2019), 385-409. doi: 10.1080/02331934.2018.1522636. |
[43] | M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim., 34 (1996), 1814-1830. doi: 10.1137/S0363012994268655. |
[44] | M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776. doi: 10.1137/S0363012997317475. |
[45] | D. V. Thong and D. V. Hieu, Inertial extragradient algorithms for strongly pseudomonotone variational inequalities, J. Comput. Appl. Math., 341 (2018), 80-98. doi: 10.1016/j.cam.2018.03.019. |
[46] | D. V. Thong and D. V.Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610. doi: 10.1007/s11075-017-0452-4. |
[47] | D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78 (2018), 1045-1060. doi: 10.1007/s11075-017-0412-z. |
[48] | D. V. Thong and D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer Algorithms, 80 (2019), 1283-1307. doi: 10.1007/s11075-018-0527-x. |
[49] | D. V. Thong, N. T. Vinh and Y. J. Cho, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput., 80 (2019), 1438-1462. doi: 10.1007/s10915-019-00984-5. |
[50] | D. V. Thong, D. Van Hieu and T. M. Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14 (2020), 115-144. doi: 10.1007/s11590-019-01511-z. |
[51] | D. V. Thong and A. Gibali, Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities, J. Fixed Point Theory Appl., 21 (2019), 20. doi: 10.1007/s11784-018-0656-9. |
[52] | D. V. Thong, N. T. Vinh and Y. J. Cho, New strong convergence theorem of the inertial projection and contraction method for variational inequality problems, Numer Algorithms, 84 (2020), 285-305. doi: 10.1007/s11075-019-00755-1. |
[53] | D. V. Thong and D. Van Hieu, Strong convergence of extragradient methods with a new step size for solving variational inequality problems, Comp. Appl. Math., 38 (2019), 136. doi: 10.1007/s40314-019-0899-0. |
[54] | D. V. Thong, Y. Shehu and O. S. Iyiola, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer. Algorithms, 84 (2020), 795-823. doi: 10.1007/s11075-019-00780-0. |
[55] | D. V. Thong and D. V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., 20 (2018), 129. doi: 10.1007/s11784-018-0610-x. |
[56] | D. V. Thong and D. V. Hieu, Modified Tseng's extragradient algorithms for variational inequality problems, J. Fixed Point Theory Appl., 20 (2018), 152. doi: 10.1007/s11784-018-0634-2. |
[57] | D. V. Thong, N. A. Triet, X.-H. Li and Q.-L. Dong, Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems, Numer. Algorithms, 83 (2020), 1123-1143. doi: 10.1007/s11075-019-00718-6. |
[58] | P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446. doi: 10.1137/S0363012998338806. |
[59] | F. Wang and H.-K. Xu, Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng's extragradient method, Taiwan. J. Math., 16 (2012), 1125-1136. doi: 10.11650/twjm/1500406682. |
[60] | H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256. doi: 10.1112/S0024610702003332. |
Example 1:
Example 1:
Example 1:
Example 1:
Example 1:
Example 1:
Example 1:
Example 1:
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 1: Different
Example 2: Case I
Example 2: Case II
Example 2: Case III
Example 2: Case IV
Example 2: Case V
Example 2: Case VI
Example 2: Case I with different
Example 2: Case II with different
Example 2: Case III with different
Example 2: Case IV with different
Example 2: Case V with different
Example 2: Case VI with different
Example 2: Case I with different
Example 2: Case II with different
Example 2: Case III with different
Example 2: Case IV with different
Example 2: Case V with different
Example 2: Case VI with different
The value of error versus the iteration numbers for Example 3