\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Filled function method to optimize supply chain transportation costs

  • * Corresponding author: Youlin Shang

    * Corresponding author: Youlin Shang 

The first author is supported by NSF grant of China (Nos.12071112, 11701150, 11471102); Basic research projects for key scientific research projects in Henan Province of China (No.20ZX001)

Abstract Full Text(HTML) Figure(0) / Table(6) Related Papers Cited by
  • The transportation-based supply chain model can be formulated as the constrained nonlinear programming problems. When solving such problems, the classic optimization algorithms are often limited to local minimums, causing the difficulty to find the global optimal solution. Aiming at this problem, a filled function method with a single parameter is given to cross the local minimum. Based on the characteristics of the filled function, a new filled function algorithm that can obtain the global optimal solution is designed. Numerical experiments verify the feasibility and effectiveness of the algorithm. Finally, the filled function algorithm is applied to the solution of supply chain problems, and the numerical results show that the algorithm can also address decision-making problems of supply chain transportation effectively.

    Mathematics Subject Classification: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.   

    The proposed Algorithm Algorithm in [10]
    $ f({x^*}) $ $ f({x^*}) $
    Problem 1 -1.0316 -1.0316
    Problem 2 0 0
    Problem 3 1.513e-08 0
    Problem 4, n=10 4.4277e-43 1.3790e-14
    Problem 4, n=20 3.2490e-44 3.0992e-14
    Problem 4, n=50 1.8410e-43 9.85.1e-13
     | Show Table
    DownLoad: CSV

    Table 2.   

    The proposed Algorithm Algorithm in [10]
    CPU run time(s) Total times(times) CPU run time(s) Total times(times)
    Problem 1 19.1964 1986 26.3325 2453
    Problem 2 15.1005 1537 18.8756 1421
    Problem 3 10.8827 961 14.3194 1227
    Problem 4, n=10 16.0294 1920 70.5483 8895
    Problem 4, n=20 24.6212 4696 91.3288 18242
    Problem 4, n=50 34.9223 6728 195.3385 43232
     | Show Table
    DownLoad: CSV

    Table 3.  Transporter to seller unit cost and maximum transport volume

    Transporter 1 Transporter 2
    Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
    Seller 1 220 200
    Transporter 1 Seller 2 250 1000 220 1500
    Seller 3 210 210
    Seller 1 180 200
    Transporter 2 Seller 2 200 1200 210 1000
    Seller 3 210 220
     | Show Table
    DownLoad: CSV

    Table 4.  Transporter to supplier unit cost and maximum transport volume

    Transporter 1 Transporter 2
    Mode of generalized transport unit cost($/t) maximum amount(t) unit cost($/t) maximum amount(t)
    Transporter 1 Supplier 1 180 2000 190 2500
    Transporter 2 Supplier 2 210 2200 220 2000
     | Show Table
    DownLoad: CSV

    Table 5.  Seller's unit product cost and demand

    Seller 1 Seller 2 Seller 3
    Unit product sales cost ($/t) 80 90 85
    Product demand (t) 1000 1200 800
     | Show Table
    DownLoad: CSV

    Table 6.   

    $ {x^*} $ $ {\beta ^*} $ $ f({x^*}) $
    (0 0 800 0 1000 200 0 0 0 0 1000 0) (0.556 0 0.444 0) 1171.8
     | Show Table
    DownLoad: CSV
  • [1] R. P. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming, 46 (1990), 191-204.  doi: 10.1007/BF01585737.
    [2] R. P. Ge and Y. F. Qin, A class of filled function for finding global minimizer of a function of several variables, Journal of Optimization Theory and Applicaions, 54 (1987), 241-252.  doi: 10.1007/BF00939433.
    [3] A. V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing, 6 (1985), 15-29.  doi: 10.1137/0906002.
    [4] J. Y. LiB. S. Han and Y. J. Yang, A novel one parameter filled function, Comm. on Appl. Math. and Comput, 24 (2010), 17-24. 
    [5] J. R. LiY. L. Shang and P. Han, New Tunnel-Filled Function Method for Discrete Global Optimization, Journal of the Operations Research Society of China, 5 (2017), 291-300.  doi: 10.1007/s40305-017-0160-8.
    [6] H. W. LinY. L. GaoX. Wang and S. Su, A filled function which has the same local minimizer of the objective function, Optimization Letters, 13 (2019), 761-776.  doi: 10.1007/s11590-018-1275-5.
    [7] Y. L. Shang, Research on Filled Function Method in Nonlinear Global Optimization, Ph.D thesis, Shanghai University in Shanghai of China, 2005.
    [8] Y. L. Shang and L. S. Zhang, Finding discrete global minima with a filled function for integer programming, European Journal of Operational Research, 189 (2008), 31-40.  doi: 10.1016/j.ejor.2007.05.028.
    [9] L. Y. Shu and Q. P. Yan, Study of a non-linear optimal model on the manufacturer core supply chain, Systems Engineering-Theory and Practice, 2 (2006), 36-41. 
    [10] W. X. WangY. L. Shang and D. Wang, Filled function method for solving non-smooth box constrained global optimization problems, Operational Research Transactions, 23 (2019), 28-34. 
    [11] W. X. WangY. L. Shang and L. S. Zhang, A filled function method with one parameter for constrained global optimization, Chinese Journal of Engineering Mathematics, 25 (2008), 795-803. 
    [12] Y. WangW. Fang and T. Wu, A cut-peak function method for global optimization, Journal of Computational and Applied Mathematics, 230 (2009), 135-142.  doi: 10.1016/j.cam.2008.10.069.
    [13] Y. J. YangM. L. He and Y. L. Gao, Discrete Global Optimization Problems with a Modified Discrete Filled Function, Journal of the Operations Research Society of China, 3 (2015), 297-315.  doi: 10.1007/s40305-015-0085-z.
    [14] Y. J. Yang and Y. M. Liang, A new discrete filled function algorithm for discrete global optimization, Journal of Computational and Applied Mathematics, 202 (2007), 280-291.  doi: 10.1016/j.cam.2006.02.032.
    [15] Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization, Applied Mathematics and Computation, 173 (2006), 501-512.  doi: 10.1016/j.amc.2005.04.046.
    [16] Y. J. YangZ. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming, Journal of Industrial and Management Optimization, 4 (2008), 353-362.  doi: 10.3934/jimo.2008.4.353.
    [17] L. YuanZ. Wan and Q. Tang, A criterion for an approximation global optimal solution based on the filled functions, Journal of Industrial and Management Optimization, 12 (2016), 375-387.  doi: 10.3934/jimo.2016.12.375.
    [18] L. YuanZ. WanJ. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problem, Journal of Industrial and Management Optimization, 5 (2009), 911-928.  doi: 10.3934/jimo.2009.5.911.
    [19] Y. ZhangL. S. Zhang and Y. T. Xu, New filled functions for non-smooth global optimization, Applied Mathematical Modelling, 33 (2009), 3114-3129.  doi: 10.1016/j.apm.2008.10.015.
  • 加载中

Tables(6)

SHARE

Article Metrics

HTML views(807) PDF downloads(607) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return