[1]
|
A. Archer, M. Bateni, M. Hajiaghayi and H. Karloff, Improved approximation algorithms for prize-collecting Steiner tree and TSP, SIAM Journal on Computing, 40 (2011), 309-332.
doi: 10.1137/090771429.
|
[2]
|
M. Bellare, S. Goldwass, C. Lund and A. Russell, Efficient probabilistically checkable proofs and applications to approximations, in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, (1993), 294–304.
doi: 10.1145/167088.167174.
|
[3]
|
P. Berman, M. Karpinski and A. Zelikovsky, 1.25-approximation algorithm for Steiner tree problem with distances 1 and 2, in Algorithms and Data Structures, (eds. F. Dehne, M. Gavrilova, J.R. Sack, C.D. Tóth), Springer Press. (2009), 86–97.
doi: 10.1007/978-3-642-03367-4_8.
|
[4]
|
M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Information Processing Letters, 32 (1989), 171-176.
doi: 10.1016/0020-0190(89)90039-2.
|
[5]
|
D. Bienstock, M. X. Goeman, D. Simchi-Levi and D. Williamson, A note on the prize collecting traveling salesman problem, Mathematical Programming, 59 (1993), 413-420.
doi: 10.1007/BF01581256.
|
[6]
|
A. Borchers and D.-Z. Du, The $k$-Steiner ratio in graphs, SIAM Journal on Computing, 26 (1997), 857-869.
doi: 10.1137/S0097539795281086.
|
[7]
|
G. Borradaile, P. Klein and C. Mathieu, An $O(n\log n)$ approximation scheme for steiner tree in planar graphs, ACM Transactions on Algorithms, 5 (2009), 1-31.
doi: 10.1145/1541885.1541892.
|
[8]
|
J. Byrka, F. Grandoni, T. Rothvoß and L. Sanità, Steiner tree approximation via iterative randomized rounding, Journal of the ACM, 60 (2013), 1-33.
doi: 10.1145/2432622.2432628.
|
[9]
|
M. Cheung, J. Mestre, D. B. Shmoys and J. Verschae, A primal-dual approximation algorithm for min-sum single-machine scheduling problems, SIAM Journal on Discrete Mathematics, 31 (2017), 825-838.
doi: 10.1137/16M1086819.
|
[10]
|
S. Chopra and M. R. Rao, The Steiner tree problem I: Formulations, compositions and extension of facets, Mathematical Programming, 64 (1994), 209-229.
doi: 10.1007/BF01582573.
|
[11]
|
S. Chopra and C.-Y. Tsai, Polyhedral approaches for the Steiner tree problem on graphs, Steiner Trees in Industry, Comb. Optim., 11, Kluwer Acad. Publ., Dordrecht, 2001,175–201.
doi: 10.1007/978-1-4613-0255-1_5.
|
[12]
|
R. Cole, R. Hariharan, M. Lewenstein and E. Porat, A faster implementation of the GoemansWilliamson clustering algorithm, in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, (2001), 17–25.
|
[13]
|
D. Du, R. Lu and D. Xu, A primal-dual approximation algorithm for the facility location problem with submodular penalties, Algorithmica, 63 (2012), 191-200.
doi: 10.1007/s00453-011-9526-1.
|
[14]
|
P. Feofiloff, C. G. Fernandes, C. E. Ferreira and J. C. de. Pina, Primal-dual approximation algorithms for the prize-collecting Steiner tree problem, Information Processing Letters, 103 (2007), 195-202.
doi: 10.1016/j.ipl.2007.03.012.
|
[15]
|
M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM Journal on Applied Mathematics, 32 (1977), 826-834.
doi: 10.1137/0132071.
|
[16]
|
E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM Journal on Applied Mathematics, 16 (1968), 1-29.
doi: 10.1137/0116001.
|
[17]
|
M. X. Goemans and D. P. Williamson, A general approximation technique for constrained forest problems, SIAM Journal on Computing, 24 (1995), 296-317.
doi: 10.1137/S0097539793242618.
|
[18]
|
A. Gupta, M. Pál, R. Ravi and A. Sinha, Sampling and cost-sharing: Approximation algorithms for stochastic optimization problems, SIAM Journal on Computing, 40 (2011), 1361-1401.
doi: 10.1137/080732250.
|
[19]
|
H. Heitsch and W. Römisch, Scenario reduction algorithm in stochastic programming, Computational Optimization and Applications, 24 (2003), 187-206.
doi: 10.1023/A:1021805924152.
|
[20]
|
D. S. Hochbaum, Approximation algorithm for set covering and vertex cover problems, SIAM Journal on Computing, 11 (1982), 555-556.
doi: 10.1137/0211045.
|
[21]
|
K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.
doi: 10.1145/375827.375845.
|
[22]
|
D. S. Johnson, M. Minkoff and S. Phillips, The prize collecting Steiner tree problem: Theory and practice, in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, (2000), 760–769.
|
[23]
|
R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, Plenum, New York, 1972, 85–103.
|
[24]
|
M. Karpinski and A. Zelikovsky, New approximation algorithms for the Steiner tree problems, Journal of Combinatorial Optimization, 1 (1997), 47-65.
doi: 10.1023/A:1009758919736.
|
[25]
|
H. J. Prömel and A. Steger, A new approximation algorithm for the Steiner tree problem with performance ratio 5/3, Journal of Algorithm, 36 (2000), 89-101.
doi: 10.1006/jagm.2000.1086.
|
[26]
|
R. Ravi and A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic optimization problems, Mathematical Programming, 108 (2006), 97-114.
doi: 10.1007/s10107-005-0673-5.
|
[27]
|
G. Robins and A. Zelikovsky, Tighter bounds for graph Steiner tree approximation, SIAM Journal on Discrete Mathematics, 19 (2005), 122-134.
doi: 10.1137/S0895480101393155.
|
[28]
|
R. Schultz, L. Stougie and M. H. van der Vlerk, Two-stage stochastic integer programming: A survey, Statistica Neerlandica, 50 (1996), 404-416.
doi: 10.1111/j.1467-9574.1996.tb01506.x.
|
[29]
|
D. P. Williamson, M. X. Goemans, M. Mihail and V. V. Vazirani, A primal-dual approximation algorithm for generalized steiner network problems, Combinatorica, 15 (1995), 435-454.
doi: 10.1007/BF01299747.
|
[30]
|
A. Z. Zelikovsky, A faster 11/6 approximation algorithm for the Steiner problem in graphs, Information Processing Letters, 46 (1993), 79-83.
doi: 10.1016/0020-0190(93)90201-J.
|