\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy

  • * Corresponding author: Seyed Hamid Reza Pasandideh

    * Corresponding author: Seyed Hamid Reza Pasandideh 
Abstract / Introduction Full Text(HTML) Figure(12) / Table(11) Related Papers Cited by
  • The main reason for the development of this research refers to the increased attention of businesses to the CLSC concept due to the social responsibilities, strict international legislations and economic motives. Hence, this study investigates the issue of optimizing a CLSC problem involving multiple manufacturers, a hybrid cross-dock/collection center, multiple retailers and a disposal center in deterministic, multi-product and multi-period contexts. The bi-objective MILP model developed here is to simultaneously minimize total costs and total processing time of CLSC. Both strategic and tactical decisions are considered in the model where retailer demands and capacity constraints are satisfied. Since the presented model is NP-hard, NSGAII and MOPSO are hired to find near-to-optimal results for practical problem sizes in polynomial time.Then, to increase the accuracy of solutions by tuning the algorithms' parameters, the Taguchi method is applied. The practicality of the developed

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  General structure for the considered CLSC network

    Figure 2.  The pseudo code of NSGA-II [62]

    Figure 3.  The pseudo code related to product's flow from manufacturer to retailer

    Figure 4.  A sample of crossover operator

    Figure 5.  A sample of mutation operator

    Figure 6.  The pseudo code of MOPSO [55]

    Figure 7.  Average S/N ratio levels for NSGAII's parameters

    Figure 8.  Average S/N ratio levels for MOPSO's parameters

    Figure 9.  Individual 95% CIs for mean based on Pooled StDev

    Figure 10.  Individual 95% CIs for mean based on Pooled StDev

    Figure 11.  Kruskal-Wallis test on computational time

    Figure 12.  Sensitivity analysis of the demand parameter

    Table 1.  A brief review of related literatures

    Reference Model Characteristics Decision variables Objective Method
    Flow Hybrid fac. Period Product Out. Disc. Cross. Example No. Des.
    [50] CLSC Yes Mu Mu Yes No No Test problem Loc/Alloc Si $\downarrow$ total costs LINGO software, Metaheuristic
    [59] CLSC No Mu Mu Yes No No Test problem Loc/Alloc Si $\downarrow$ total logistics costs LINGO software, Metaheuristic
    [24] CLSC No Si Mu Yes No No Test problem Loc/Alloc Mu $\downarrow$ total costs
    $\downarrow$ total tardiness
    Scatter search, Dual simplex, $\epsilon$-constraint
    [68] CLSC No Si Si No No No Test problem Loc/Alloc Mu $\downarrow$ total costs
    $\uparrow$ responsiveness
    Metaheuristics
    [67] CLSC Yes Mu Mu No No No an office document company Loc/Alloc/Inv Mu $\downarrow$ total costs
    $\uparrow$ service efficiency
    Goal programming, Compromise programming
    [5] CLSC No Si Mu No No No Copier remanufacturing Loc/Alloc Mu $\downarrow$ total costs
    $\uparrow$ environmental factors
    Weighted sums, $\epsilon$-constraint
    [22] CLSC No Si Si No No No Test problem Loc/Alloc Mu $\downarrow$total costs
    $\downarrow$ environmental impacts
    $\uparrow$ ↑social benefits
    GAMS software, Metaheuristics
    [7] CLSC No Mu Mu No No No Refrigerator industry Loc/Alloc/Inv Mu $\downarrow$total costs
    $\downarrow$total travel time
    $\epsilon$-constraint, GAMS software, Metaheuristics
    [20] CLSC Yes Si Mu No No No Test problem Loc/Alloc Mu $\uparrow$ total profit
    $\downarrow$ total spent energy
    $\downarrow$ harmful emissions
    LINGO software, Goal programming
    [89] CLSC Yes Si Mu No No No Test problem Loc/Alloc Mu $\downarrow$ total costs
    $\downarrow$ waiting time in services
    Interval-stochastic, robust optimization, Metaheuristic, Lower bound procedure, GAMS software
    [48] RL No Si Mu No No Yes Test problem Loc/Alloc Si $\downarrow$ total costs GAMS software
    [93] CLSC No Si Si No No No Gold industry Loc/Alloc Mu $\downarrow$ total costs
    $\uparrow$ total incomes
    $\downarrow$ CO2 emissions
    LINGO software, Metaheuristic
    [54] CLSC No Si Mu No No No Test problem Loc/Alloc Mu $\downarrow$ total costs
    $\downarrow$ environmental impacts
    LINGO software, LP-metrics
    [85] CLSC No Si Mu No No No Copiers industry Loc/Alloc Mu $\downarrow$ total costs
    $\downarrow$ CO2 emissions
    $\epsilon$-constraint
    [92] CLSC No Mu Mu No No No LCD and LED TV Loc/Alloc/ Route/Inv Mu $\downarrow$ total costs
    $\downarrow$ environmental impacts
    $\uparrow$ social impacts
    stochastic-possibilistic programming, modified game theory, lower bound procedure, GAMS software, Hybrid metaheuristic
    [18] CLSC No Si Si No No No Solar cell industry Loc/Alloc Mu $\downarrow$ total costs
    $\downarrow$ CO2 emissions
    branch & bound, CPLEX software, Metaheuristic
    [94] RL No Si Mu No No Yes Test problem Alloc Si $\downarrow$ total costs CPLEX software
    [37] CLSC No Mu Si Yes No No Filter Loc/Alloc/SS/Inv/Price Mu $\uparrow$ total profit
    $\downarrow$ CO2 emissions
    Karush–Kuhn–Tucker, conditions possibilistic method, $\epsilon$-constraint, CPLEX software
    [75] CLSC Yes Mu Mu No Yes No Test problem Loc/Alloc/SS Mu $\downarrow$total costs
    $\downarrow$ CO2 emissions
    $\uparrow$ customer satisfaction
    CPLEX software, LP-metrics
    [72] CLSC No Si Si No No Yes Test problem Loc/Alloc Mu $\downarrow$total costs
    $\downarrow$ environmental impacts
    $\uparrow$ social benefits
    GAMS software, Metaheuristics
    [40] CLSC Yes Mu Mu No No No Test problem Loc/Alloc/Inv Mu $\uparrow$ increase in the cash flow
    $\uparrow$ social responsibility
    $\downarrow$ amount of unreliable raw materials
    $\epsilon$-constraint, GAMS software, Metaheuristics
    [61] CLSC No Mu Mu Yes No No Battery Loc/Alloc/TPS Mu $\uparrow$ total profit
    $\uparrow$ environmental compliance
    Fully fuzzy stochastic programming
    [86] CLSC No Mu Si No Yes No CFL light bulb Alloc/Inv/Price Mu $\downarrow$total costs
    $\downarrow$ environmental impacts
    $\downarrow$ social impacts
    Fuzzy TH approach [88]
    [65] CLSC No Si Mu No No No Tanker industry Loc/Alloc/SS Mu $\downarrow$total costs
    $\downarrow$ environmental impacts
    $\uparrow$ social impacts
    Multi-choice goal programming with utility function
    [66] CLSC No Mu Si No No No Test problem Loc/Alloc Mu $\uparrow$supply chain surplus
    $\downarrow$ CO2 emissions
    MATLAB software
    This paper CLSC Yes Mu Mu Yes Yes Yes Test problem Loc/Alloc/TPS Mu $\downarrow$ total costs
    $\downarrow$ total processing times
    $\epsilon$-constraint, LINGO software, Metaheuristics
    Notes:
    fac. (facility); Out. (outsource); Disc. (discount); Cross. (cross-dock); Des. (description); RL (reverse logistic); CLSC (closed loop supply chain); Si (single); Mu (multi); Loc (location); Alloc (allocation); Inv (inventory); Route (routing); SS (supplier selection); TPS (third party selection); Price (pricing)
     | Show Table
    DownLoad: CSV

    Table 2.  Parameters and their levels for NSGAII

    Parameters Symbols Levels Value Tuned
    Level 1 Level 2 Level 3
    Pop Size (A) 100 150 200 100
    Iteration (B) 100 150 200 200
    Crossover Rate (C) 0.85 0.9 0.95 0.85
    Mutation Rate (D) 0.03 0.05 0.1 0.05
     | Show Table
    DownLoad: CSV

    Table 3.  Parameters and their levels for MOPSO

    Parameters Symbols Levels Value Tuned
    Level 1 Level 2 Level 3
    Pop Size (A) 50 100 150 100
    Iteration (B) 100 150 200 200
    Inertia Weight (C) 0.75 0.8 0.85 0.75
    C1 (D) 1.0 1.5 2.0 1.5
    C2 (E) 1.0 1.5 2.0 1.5
     | Show Table
    DownLoad: CSV

    Table 4.  Size and level of problems

    Problem levels Problem size (I, C, J, K, M, N, P, T)
    Small scale P1. (2, 2, 5, 2, 2, 2, 4, 3) P6. (4, 3, 10, 2, 2, 2, 4, 3)
    P2. (2, 2, 7, 3, 2, 2, 4, 3) P7. (5, 2, 5, 2, 2, 2, 4, 3)
    P3. (3, 3, 10, 2, 2, 2, 4, 3) P8. (5, 2, 7, 3, 2, 2, 4, 3)
    P4. (3, 2, 5, 2, 2, 2, 4, 3) P9. (6, 3, 10, 2, 2, 2, 4, 3)
    P5. (4, 2, 7, 3, 2, 2, 4, 3) P10. (6, 3, 10, 3, 2, 2, 4, 3)
    Medium scale P11. (7, 4, 15, 3, 2, 3, 4, 5) P16. (11, 5, 30, 3, 3, 3, 4, 5)
    P12. (7, 4, 20, 4, 2, 4, 4, 5) P17. (13, 4, 15, 3, 2, 3, 4, 5)
    P13. (9, 5, 30, 3, 3, 3, 4, 5) P18. (13, 4, 20, 4, 2, 4, 4, 5)
    P14. (9, 4, 15, 3, 2, 3, 4, 5) P19. (15, 5, 30, 3, 3, 3, 4, 5)
    P15. (11, 4, 20, 4, 2, 4, 4, 5) P20. (15, 5, 30, 4, 3, 4, 4, 5)
    Large scale P21. (16, 6, 50, 5, 3, 5, 4, 10) P26. (20, 9,100, 5, 4, 5, 4, 10)
    P22. (16, 6, 75, 7, 3, 7, 4, 10) P27. (22, 6, 50, 5, 3, 5, 4, 10)
    P23. (18, 9,100, 5, 4, 5, 4, 10) P28. (22, 6, 75, 7, 3, 7, 4, 10)
    P24. (18, 6, 50, 5, 3, 5, 4, 10) P29. (24, 9,100, 5, 4, 5, 4, 10)
    P25. (20, 6, 75, 7, 3, 7, 4, 10) P30. (24, 9,100, 7, 4, 7, 4, 10)
     | Show Table
    DownLoad: CSV

    Table 5.  Parameters' range in test problems

    Parameter Random generation function
    Demand (DE) U [50,150]
    Production capacity (MC) U [200*J/I, 200*J/I+275*J/I]
    Transportation capacity (VC) U [200*N*J/I, 200*N*J/I+275*N*J/I]
    Upper bound (U) Transportation capacity/P+1
    Transportation fixed cost I (FCC) U [15, 20]
    Transportation fixed cost II (FCR) U [8, 15]
    Transportation fixed cost III (FCD) U [5, 10]
    Transportation cost I (TIC) U [10, 15]
    Transportation cost II (TCJ) U [4, 8]
    Transportation cost III (TCD) U [3, 5]
    Production cost (PC) U [80,100]
    Opening cost of hybrid facility (EC) U [5, 30]
    Recovery cost (RC) U [20, 30]
    Consolidation time (TA) U [0.08, 0.11]
    Inspection time (TI) U [0.03, 0.06]
    Transportation time I (TC) U [2, 20]
    Transportation time II (TM) U [1.5, 12]
    Transportation time III (TD) U [3, 5]
    Fraction of returned product ($ \alpha $) U [0.02, 0.04]
    Fraction of recoverable product ($ \beta $) U [0.25, 0.8]
    Weight/volume of each unit of product ($ \gamma $) U [0.5, 3]
     | Show Table
    DownLoad: CSV

    Table 6.  The obtained metrics for algorithms' performance (MID, SM, NPS, QM and Time)

    Problem size $\sharp$ P. MID SM NPS QM Time
    NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO
    Small P1. 0.2965 0.9135 0.52047 0.79424 2 13 0.11743 0.88256 152.2674 83.61384
    P2. 0.7985 0.7594 1.44002 1.42646 11 5 0.21714 0.78285 170.5 93.31762
    P3. 0.6678 0.8303 0.90528 1.30920 11 20 0.16347 0.83652 170.5483 112.2679
    P4. 0.7380 0.8242 0.34031 1.31610 4 12 0.03538 0.96461 169.0048 89.31582
    P5. 0.8355 0.9241 0.04645 0.77740 3 13 0.18888 0.81111 170.3636 105.0191
    P6. 0.8890 0.6733 0.73833 1.26314 9 11 0.14164 0.85835 170.8992 117.5417
    P7. 0.5898 0.8458 0.92847 1.49796 9 19 0.025 0.975 170.4384 115.9775
    P8. 0.6611 0.8644 1.26429 1.74167 8 12 0.03760 0.96239 170.6712 132.081
    P9. 0.8354 0.8519 0.63885 0.40465 4 7 0 1 170.698 131.0991
    P10. 0.9213 0.8708 0.24135 0.98781 9 3 0.01818 0.98181 170.9277 133.0108
    Medium P11. 1.2217 0.6809 0.24001 0.59929 2 5 0.08008 0.91991 171.9736 171.6591
    P12. 1.0055 0.6922 0.76749 0.72169 7 10 0.25 0.75 174.4272 164.5119
    P13. 0.9574 0.6393 0.27271 0.12447 4 7 0.38650 0.61349 173.6264 172.9455
    P14. 1.0100 0.8820 0.57146 0.46826 5 8 0.27200 0.72799 172.9297 173.0899
    P15. 1.0500 0.7352 0.65799 1.15036 4 4 0.15320 0.84679 173.1716 174.1405
    P16. 0.9179 0.6964 0.56273 0.59754 6 10 0.38333 0.61666 178.755 175.1082
    P17. 0.8986 0.8084 0.53351 0.79303 2 7 0.05714 0.94285 173.6318 173.4457
    P18. 0.9193 0.7470 0.75717 0.54668 7 7 0.28666 0.71333 175.8487 164.4145
    P19. 1.0065 0.6942 0.76486 0.44983 3 4 0.24 0.76 172.0987 173.5797
    P20. 0.9107 0.6542 0.41413 1.07685 7 10 0.51414 0.48585 171.5135 174.0156
    Large P21. 0.9056 0.5901 0.54131 1.23029 6 4 0.64047 0.35952 183.5318 182.9749
    P22. 0.7044 0.8123 0.98102 0.64139 4 8 0.375 0.625 196.9311 178.7448
    P23. 0.8133 0.5921 0.70779 0.39384 5 9 0.40090 0.59909 189.7017 195.596
    P24. 0.8936 0.6095 0.74845 0.32664 7 5 0.60333 0.39666 196.8208 173.8915
    P25. 0.8663 0.6634 0.43799 0.39058 7 3 0.61555 0.38444 180.2806 180.9208
    P26. 0.8217 0.7219 0.10674 0.63042 7 3 0.31666 0.68333 184.1588 183.5843
    P27. 0.7576 0.7515 1.17926 0.91817 9 7 0.23690 0.76309 180.4263 193.2142
    P28. 0.9310 0.6332 0.85185 0.95080 8 5 0.59047 0.40952 192.3841 180.048
    P29. 0.7122 0.7540 0.77547 0.99490 7 4 0.34381 0.65619 177.788 186.2371
    P30. 0.9133 0.7173 0.48094 0.91014 5 5 0.59285 0.40714 211.5774 188.7306
     | Show Table
    DownLoad: CSV

    Table 7.  ANOVA results for MID criterion

    Source DF SS MS F-Test P-Value
    Factor 1 0.1517 0.1517 8.09 0.006
    Error 58 1.0869 0.0187
    Total 59 1.2386
     | Show Table
    DownLoad: CSV

    Table 8.  ANOVA results for QM criterion

    Source DF SS MS F-Test P-Value
    Factor 1 3.0071 3.0071 75.25 0.000
    Error 58 2.3179 0.0400
    Total 59 5.3250
     | Show Table
    DownLoad: CSV

    Table 9.  ANOVA results for NPS criterion

    Source DF SS MS F-Test P-Value
    Factor 1 56.1 56.1 4.35 0.041
    Error 58 747.9 12.9
    Total 59 803.9
     | Show Table
    DownLoad: CSV

    Table 10.  ANOVA results for QM criterion

    Source DF SS MS F-Test P-Value
    Factor 1 3.0071 3.0071 75.25 0.000
    Error 58 2.3179 0.0400
    Total 59 5.3250
     | Show Table
    DownLoad: CSV

    Table 11.  Results of sensitivity analysis

    Objective functions Demand's change interval
    -20% -10% 0% 10% 20%
    Total cost 431,871 553,901 806,133 849,666 948,245
    Total processing time 186 221 240 276 298
     | Show Table
    DownLoad: CSV
  • [1] R. AccorsiR. ManziniC. Pini and S. Penazzi, On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations, Journal of Transport Geography, 48 (2015), 121-134.  doi: 10.1016/j.jtrangeo.2015.09.005.
    [2] S. AgrawalR. K. Singh and Q. Murtaza, Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach, Resources, Conservation and Recycling, 108 (2016), 41-53.  doi: 10.1016/j.resconrec.2016.01.004.
    [3] F. AltiparmakM. GenL. Lin and T. Paksoy, A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215.  doi: 10.1016/j.cie.2006.07.011.
    [4] J. E. Alvarez-BenitezR. M. Everson and J. E. Fieldsend, A MOPSO algorithm based exclusively on pareto dominance concepts, International Conference on Evolutionary Multi-Criterion Optimization, 3410 (2005), 459-473.  doi: 10.1007/978-3-540-31880-4_32.
    [5] S. H. Amin and G. Zhang, A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176.  doi: 10.1016/j.apm.2012.09.039.
    [6] A. AminipourZ. Bahroun and M. Hariga, Cyclic manufacturing and remanufacturing in a closed-loop supply chain, Sustainable Production and Consumption, 25 (2021), 43-59.  doi: 10.1016/j.spc.2020.08.002.
    [7] J. Asl-NajafiB. ZahiriA. Bozorgi-Amiri and A. Taheri-Moghaddam, A dynamic closed-loop location-inventory problem under disruption risk, Computers & Industrial Engineering, 90 (2015), 414-428.  doi: 10.1016/j.cie.2015.10.012.
    [8] E. Babaee Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927. doi: 10.1016/j.jclepro.2020.122927.
    [9] S. BarakM. YousefiH. Maghsoudlou and S. Jahangiri, Energy and GHG emissions management of agricultural systems using multi objective particle swarm optimization algorithm: A case study, Stochastic Environmental Research and Risk Assessment, 30 (2016), 1167-1187.  doi: 10.1007/s00477-015-1098-1.
    [10] E. BazanM. Y. Jaber and S. Zanoni, A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling, 40 (2016), 4151-4178.  doi: 10.1016/j.apm.2015.11.027.
    [11] E. BazanM. Y. Jaber and S. Zanoni, Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms, International Journal of Production Economics, 183 (2017), 394-408.  doi: 10.1016/j.ijpe.2016.07.009.
    [12] T. Blickle, Handbook of Evolutionary Computation, Chapter Tournament Selection, IOP Publishing Ltd, 1997.
    [13] A. Bouras and L. Tadj, Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial & Management Optimization, 11 (2015), 1041-1058.  doi: 10.3934/jimo.2015.11.1041.
    [14] N. Boysen and M. Fliedner, Cross dock scheduling: Classification, literature review and research agenda, Omega, 38 (2010), 413-422.  doi: 10.1016/j.omega.2009.10.008.
    [15] G. J. BurkeJ. Carrillo and A. J. Vakharia, Heuristics for sourcing from multiple suppliers with alternative quantity discounts, European Journal of Operational Research, 186 (2008), 317-329.  doi: 10.1016/j.ejor.2007.01.019.
    [16] A. ChaabaneA. Ramudhin and M. Paquet, Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.  doi: 10.1016/j.ijpe.2010.10.025.
    [17] J.-M. Chen and C.-I. Chang, The co-opetitive strategy of a closed-loop supply chain with remanufacturing, Transportation Research Part E: Logistics and Transportation Review, 48 (2012), 387-400.  doi: 10.1016/j.tre.2011.10.001.
    [18] Y.-W. ChenL.-C. WangA. Wang and T.-L. Chen, A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry, Robotics and Computer-Integrated Manufacturing, 43 (2017), 111-123.  doi: 10.1016/j.rcim.2015.10.006.
    [19] Y.-H. Cheng and F. Lee, Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan, Industrial Marketing Management, 39 (2010), 1111-1119.  doi: 10.1016/j.indmarman.2009.10.004.
    [20] K. Das and N. R. Posinasetti, Addressing environmental concerns in closed loop supply chain design and planning, International Journal of Production Economics, 163 (2015), 34-47.  doi: 10.1016/j.ijpe.2015.02.012.
    [21] K. DebA. PratapS. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017.
    [22] K. DevikaA. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.  doi: 10.1016/j.ejor.2013.12.032.
    [23] J. DongL. JiangW. Lu and Q. Guo, Closed-loop supply chain models with product remanufacturing under random demand, Optimization, 70 (2021), 27-53.  doi: 10.1080/02331934.2019.1696341.
    [24] F. Du and G. W. Evans, A bi-objective reverse logistics network analysis for post-sale service, Computers & Operations Research, 35 (2008), 2617-2634.  doi: 10.1016/j.cor.2006.12.020.
    [25] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), 39–43.
    [26] T. EfendigilS. Önüt and E. Kongar, A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness, Computers & Industrial Engineering, 54 (2008), 269-287.  doi: 10.1016/j.cie.2007.07.009.
    [27] B. FahimniaJ. SarkisF. DehghanianN. Banihashemi and S. Rahman, The impact of carbon pricing on a closed-loop supply chain: An Australian case study, Journal of Cleaner Production, 59 (2013), 210-225.  doi: 10.1016/j.jclepro.2013.06.056.
    [28] H. FallahH. Eskandari and M. S. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.  doi: 10.1016/j.jmsy.2015.01.005.
    [29] M. FareeduddinA. HassanM. N. Syed and S. Selim, The impact of carbon policies on closed-loop supply chain network design, Procedia CIRP, 26 (2015), 335-340.  doi: 10.1016/j.procir.2014.07.042.
    [30] A. M. Fathollahi-FardF. Gholian-JouybariM. M. Paydar and M. Hajiaghaei-Keshteli, A bi-objective stochastic closed-loop supply chain network design problem considering downside risk, Industrial Engineering & Management Systems, 16 (2017), 342-362.  doi: 10.7232/iems.2017.16.3.342.
    [31] A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, A stochastic multi-objective model for a closed-loop supply chain with environmental considerations, Applied Soft Computing, 69 (2018), 232-249.  doi: 10.1016/j.asoc.2018.04.055.
    [32] A. M. FathollahiFard and M. Hajaghaei-Keshteli, A tri-level location-allocation model for forward/reverse supply chain, Applied Soft Computing, 62 (2018b), 328-346.  doi: 10.1016/j.asoc.2017.11.004.
    [33] A. M. Fathollahi-FardM. Hajiaghaei-Keshteli and S. Mirjalili, Multi-objective stochastic closed-loop supply chain network design with social considerations, Applied Soft Computing, 71 (2018), 505-525.  doi: 10.1016/j.asoc.2018.07.025.
    [34] Z. Feng, T. Xiao and D. J. Robb, Environmentally responsible closed-loop supply chain models with outsourcing and authorization options, Journal of Cleaner Production, 278 (2021), 123791. doi: 10.1016/j.jclepro.2020.123791.
    [35] M. R. GalbrethJ. A. Hill and S. Handley, An investigation of the value of cross-docking for supply chain management, Journal of Business Logistic, 29 (2008), 225-239.  doi: 10.1002/j.2158-1592.2008.tb00076.x.
    [36] H. Gholizadeh and H. Fazlollahtabar, Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry, Computers & Industrial Engineering, 147 (2020), 106653. doi: 10.1016/j.cie.2020.106653.
    [37] M. Ghomi-AviliS. G. J. NaeiniR. Tavakkoli-Moghaddam and A. Jabbarzadeh, A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188 (2018), 425-442.  doi: 10.1016/j.jclepro.2018.03.273.
    [38] A. Goli and S. M. R. Davoodi, Coordination policy for production and delivery scheduling in the closed loop supply chain, Production Engineering, 12 (2018), 621-631.  doi: 10.1007/s11740-018-0841-0.
    [39] A. Goli, E. B. Tirkolaee and G.-W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Operations and Management for Recycling and Reuse, (2020), 99–124. doi: 10.1007/978-3-642-33857-1_6.
    [40] A. GoliH. K. ZareR. Tavakkoli-Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.  doi: 10.1111/coin.12228.
    [41] P. GuarnieriV. A. SobreiroM. S. Nagano and A. L. M. Serrano, The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: A Brazilian case, Journal of Cleaner Production, 96 (2015), 209-219.  doi: 10.1016/j.jclepro.2014.05.040.
    [42] X. HongL. XuP. Du and W. Wang, Joint advertising, pricing and collection decisions in a closed-loop supply chain, International Journal of Production Economics, 167 (2015), 12-22.  doi: 10.1016/j.ijpe.2015.05.001.
    [43] Z.-H. HuJ.-B. SheuL. Zhao and C.-C. Lu, A dynamic closed-loop vehicle routing problem with uncertainty and incompatible goods, Transportation Research Part C: Emerging Technologies, 55 (2015), 273-297.  doi: 10.1016/j.trc.2015.01.010.
    [44] H. HuangY. He and D. Li, Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration, Journal of Cleaner Production, 180 (2018), 280-296.  doi: 10.1016/j.jclepro.2018.01.152.
    [45] N. KarimiM. Zandieh and H. R. Karamooz, Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach, Expert Systems with Applications, 37 (2010), 4024-4032.  doi: 10.1016/j.eswa.2009.09.005.
    [46] S. Kassem and M. Chen, Solving reverse logistics vehicle routing problems with time windows, The International Journal of Advanced Manufacturing Technology, 68 (2013), 57-68.  doi: 10.1007/s00170-012-4708-9.
    [47] O. Kaya and B. Urek, A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain, Computers & Operations Research, 65 (2016), 93-103.  doi: 10.1016/j.cor.2015.07.005.
    [48] A. Kheirkhah and S. Rezaei, Using cross-docking operations in a reverse logistics network design: A new approach, Production Engineering, 10 (2016), 175-184.  doi: 10.1007/s11740-015-0646-3.
    [49] H. KimJ. Yang and K.-D. Lee, Vehicle routing in reverse logistics for recycling end-of-life consumer electronic goods in South Korea, Transportation Research Part D: Transport and Environment, 14 (2009), 291-299.  doi: 10.1016/j.trd.2009.03.001.
    [50] H. J. Ko and G. W. Evans, A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers & Operations Research, 34 (2007), 346-366.  doi: 10.1016/j.cor.2005.03.004.
    [51] J. Krarup and P. M. Pruzan, The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.  doi: 10.1016/0377-2217(83)90181-9.
    [52] L. Kroon and G. Vrijens, Returnable containers: An example of reverse logistics, International Journal of Physical Distribution & Logistics Management, 25 (1995), 56-68.  doi: 10.1108/09600039510083934.
    [53] K. Lieckens and N. Vandaele, Reverse logistics network design with stochastic lead times, Computers & Operations Research, 34 (2007), 395-416.  doi: 10.1016/j.cor.2005.03.006.
    [54] R. MaL. YaoM. JinP. Ren and Z. Lv, Robust environmental closed-loop supply chain design under uncertainty, Chaos, Solitons & Fractals, 89 (2016), 195-202.  doi: 10.1016/j.chaos.2015.10.028.
    [55] H. MaghsoudlouM. R. KahagS. T. A. Niaki and H. Pourvaziri, Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution, Computers & Industrial Engineering, 99 (2016), 41-62.  doi: 10.1016/j.cie.2016.07.008.
    [56] M. MahmoudzadehS. J. Sadjadi and S. Mansour, Robust optimal dynamic production/pricing policies in a closed-loop system, Applied Mathematical Modelling, 37 (2013), 8141-8161.  doi: 10.1016/j.apm.2013.03.008.
    [57] B. K. MawandiyaJ. K. Jha and J. Thakkar, Production-inventory model for two-echelon closed-loop supply chain with finite manufacturing and remanufacturing rates, International Journal of Systems Science: Operations & Logistics, 4 (2017), 199-218.  doi: 10.1080/23302674.2015.1121303.
    [58] L. Meade and J. Sarkis, A conceptual model for selecting and evaluating third-party reverse logistics providers, Supply Chain Management: An International Journal, 7 (2002), 283-295.  doi: 10.1108/13598540210447728.
    [59] H. Min and H.-J. Ko, The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, International Journal of Production Economics, 113 (2008), 176-192.  doi: 10.1016/j.ijpe.2007.01.017.
    [60] S. Mitra, Inventory management in a two-echelon closed-loop supply chain with correlated demands and returns, Computers & Industrial Engineering, 62 (2012), 870-879.  doi: 10.1016/j.cie.2011.12.008.
    [61] B. Mohamadpour Tosarkani and S. Hassanzadeh Amin, An environmental optimization model to configure a hybrid forward and reverse supply chain network under uncertainty, Computers & Chemical Engineering, 121 (2019), 540-555.  doi: 10.1016/j.compchemeng.2018.11.014.
    [62] A. MohtashamiM. TavanaF. J. Santos-Arteaga and A. Fallahian-Najafabadi, A novel multi-objective meta-heuristic model for solving cross-docking scheduling problems, Applied Soft Computing, 31 (2015), 30-47.  doi: 10.1016/j.asoc.2015.02.030.
    [63] Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption, Journal of Cleaner Production, 242 (2010), 118452. doi: 10.1016/j.jclepro.2019.118452.
    [64] H. MoradiM. Zandieh and I. Mahdavi, Non-dominated ranked genetic algorithm for a multi-objective mixed-model assembly line sequencing problem, International Journal of Production Research, 49 (2011), 3479-3499.  doi: 10.1080/00207540903433882.
    [65] S. Nayeri, M. M. Paydar, E. Asadi-Gangraj and S. Emami, Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design, Computers & Industrial Engineering, 148 (2020), 106716. doi: 10.1016/j.cie.2020.106716.
    [66] K. PantV. S. Yadav and A. Singh, Design of multi-tier multi-time horizon closed-loop supply chain network with sustainability under uncertain environment for Indian paper industry, International Journal of Sustainable Engineering, 14 (2020), 107-122.  doi: 10.1080/19397038.2020.1774817.
    [67] S. PazhaniN. RamkumarT. T. Narendran and K. Ganesh, A bi-objective network design model for multi-period, multi-product closed-loop supply chain, Journal of Industrial and Production Engineering, 30 (2013), 264-280.  doi: 10.1080/21681015.2013.830648.
    [68] M. S. PishvaeeR. Z. Farahani and W. Dullaert, A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.  doi: 10.1016/j.cor.2009.09.018.
    [69] M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.  doi: 10.1016/j.apm.2011.10.007.
    [70] S. H. A. RahmatiM. Zandieh and M. Yazdani, Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem, The International Journal of Advanced Manufacturing Technology, 64 (2013), 915-932.  doi: 10.1007/s00170-012-4051-1.
    [71] Y. Ranjbar, H. Sahebi, J. Ashayeri and A. Teymouri, A competitive dual recycling channel in a three-level closed loop supply chain under different power structures: Pricing and collecting decisions, Journal of Cleaner Production, 272 (2020), 122623. doi: 10.1016/j.jclepro.2020.122623.
    [72] S. Rezaei and A. Kheirkhah, A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations, Computational and Mathematical Organization Theory, 24 (2018), 51-98.  doi: 10.1007/s10588-017-9247-3.
    [73] S. RezapourR. Z. FarahaniB. FahimniaK. Govindan and Y. Mansouri, Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.  doi: 10.1016/j.jclepro.2014.12.095.
    [74] Y. M. B. SaavedraA. P. B. BarquetH. RozenfeldF. A. Forcellini and A. R. Ometto, Remanufacturing in Brazil: Case studies on the automotive sector, Journal of Cleaner Production, 53 (2013), 267-276.  doi: 10.1016/j.jclepro.2013.03.038.
    [75] R. Sadeghi Rad and N. Nahavandi, A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount, Journal of Cleaner Production, 196 (2018), 1549-1565.  doi: 10.1016/j.jclepro.2018.06.034.
    [76] N. SahebjamniaA. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, Journal of Cleaner Production, 196 (2018), 273-296.  doi: 10.1016/j.jclepro.2018.05.245.
    [77] M. Saidi MehrabadA. Aazami and A. Goli, A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach, Journal of Industrial and Systems Engineering, 10 (2017), 140-160. 
    [78] J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's thesis, Massachusetts Institute of Technology, Cambridge, 1995.
    [79] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003.
    [80] F. Sgarbossa and I. Russo, A proactive model in sustainable food supply chain: Insight from a case study, International Journal of Production Economics, 183 (2017), 596-606.  doi: 10.1016/j.ijpe.2016.07.022.
    [81] D. Y. Sha and C.-Y. Hsu, A new particle swarm optimization for the open shop scheduling problem, Computers & Operations Research, 35 (2008), 3243-3261.  doi: 10.1016/j.cor.2007.02.019.
    [82] J. ShiG. Zhang and J. Sha, Optimal production planning for a multi-product closed loop system with uncertain demand and return, Computers & Operations Research, 38 (2011), 641-650.  doi: 10.1016/j.cor.2010.08.008.
    [83] Th. SpenglerH. PüchertT. Penkuhn and O. Rentz, Environmental integrated production and recycling management, European Journal of Operational Research, 97 (1997), 308-326.  doi: 10.1007/978-3-642-17036-2_22.
    [84] G. Taguchi, Introduction to Quality Engineering: Designing Quality Into Products and Processes, Asian Productivity Organization, Tokyo, 1986.
    [85] M. TalaeiB. F. MoghaddamM. S. PishvaeeA. Bozorgi-Amiri and S. Gholamnejad, A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry, Journal of Cleaner Production, 113 (2016), 662-673.  doi: 10.1016/j.jclepro.2015.10.074.
    [86] A. A. TaleizadehF. Haghighi and S. T. A. Niaki, Modeling and solving a sustainable closed loop supply chain problem with pricing decisions and discounts on returned products, Journal of Cleaner Production, 207 (2019), 163-181.  doi: 10.1016/j.jclepro.2018.09.198.
    [87] Z. G. Tao, Z. Y. Guang, S. Hao, H. J. Song and D. G. Xin, Multi-period closed-loop supply chain network equilibrium with carbon emission constraints, Resources, Conservation and Recycling, 104 (2015), 354–365. doi: 10.1016/j.resconrec.2015.07.016.
    [88] S. A. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.  doi: 10.1016/j.fss.2007.08.010.
    [89] B. Vahdani and M. Mohammadi, A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system, International Journal of Production Economics, 170 (2015), 67-87.  doi: 10.1016/j.ijpe.2015.08.020.
    [90] V. P. Vinay and R. Sridharan, Taguchi method for parameter design in ACO algorithm for distribution-allocation in a two-stage supply chain, The International Journal of Advanced Manufacturing Technology, 64 (2013), 1333-1343.  doi: 10.1007/s00170-012-4104-5.
    [91] N. ZarbakhshniaH. Soleimani and H. Ghaderi, Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria, Applied Soft Computing, 65 (2018), 307-319.  doi: 10.1016/j.asoc.2018.01.023.
    [92] M. ZhalechianR. Tavakkoli-MoghaddamB. Zahiri and M. Mohammadi, Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, 89 (2016), 182-214.  doi: 10.1016/j.tre.2016.02.011.
    [93] M. Zohal and H. Soleimani, Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry, Journal of Cleaner Production, 133 (2016), 314-337.  doi: 10.1016/j.jclepro.2016.05.091.
    [94] J. P. S. ZuluagaM. Thiell and R. C. Perales, Reverse cross-docking, Omega, 66 (2017), 48-57.  doi: 10.1016/j.omega.2016.01.010.
  • 加载中

Figures(12)

Tables(11)

SHARE

Article Metrics

HTML views(3070) PDF downloads(711) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return