[1]
|
R. Accorsi, R. Manzini, C. Pini and S. Penazzi, On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations, Journal of Transport Geography, 48 (2015), 121-134.
doi: 10.1016/j.jtrangeo.2015.09.005.
|
[2]
|
S. Agrawal, R. K. Singh and Q. Murtaza, Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach, Resources, Conservation and Recycling, 108 (2016), 41-53.
doi: 10.1016/j.resconrec.2016.01.004.
|
[3]
|
F. Altiparmak, M. Gen, L. Lin and T. Paksoy, A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215.
doi: 10.1016/j.cie.2006.07.011.
|
[4]
|
J. E. Alvarez-Benitez, R. M. Everson and J. E. Fieldsend, A MOPSO algorithm based exclusively on pareto dominance concepts, International Conference on Evolutionary Multi-Criterion Optimization, 3410 (2005), 459-473.
doi: 10.1007/978-3-540-31880-4_32.
|
[5]
|
S. H. Amin and G. Zhang, A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176.
doi: 10.1016/j.apm.2012.09.039.
|
[6]
|
A. Aminipour, Z. Bahroun and M. Hariga, Cyclic manufacturing and remanufacturing in a closed-loop supply chain, Sustainable Production and Consumption, 25 (2021), 43-59.
doi: 10.1016/j.spc.2020.08.002.
|
[7]
|
J. Asl-Najafi, B. Zahiri, A. Bozorgi-Amiri and A. Taheri-Moghaddam, A dynamic closed-loop location-inventory problem under disruption risk, Computers & Industrial Engineering, 90 (2015), 414-428.
doi: 10.1016/j.cie.2015.10.012.
|
[8]
|
E. Babaee Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.-W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, Journal of Cleaner Production, 276 (2020), 122927.
doi: 10.1016/j.jclepro.2020.122927.
|
[9]
|
S. Barak, M. Yousefi, H. Maghsoudlou and S. Jahangiri, Energy and GHG emissions management of agricultural systems using multi objective particle swarm optimization algorithm: A case study, Stochastic Environmental Research and Risk Assessment, 30 (2016), 1167-1187.
doi: 10.1007/s00477-015-1098-1.
|
[10]
|
E. Bazan, M. Y. Jaber and S. Zanoni, A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling, 40 (2016), 4151-4178.
doi: 10.1016/j.apm.2015.11.027.
|
[11]
|
E. Bazan, M. Y. Jaber and S. Zanoni, Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms, International Journal of Production Economics, 183 (2017), 394-408.
doi: 10.1016/j.ijpe.2016.07.009.
|
[12]
|
T. Blickle, Handbook of Evolutionary Computation, Chapter Tournament Selection, IOP Publishing Ltd, 1997.
|
[13]
|
A. Bouras and L. Tadj, Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial & Management Optimization, 11 (2015), 1041-1058.
doi: 10.3934/jimo.2015.11.1041.
|
[14]
|
N. Boysen and M. Fliedner, Cross dock scheduling: Classification, literature review and research agenda, Omega, 38 (2010), 413-422.
doi: 10.1016/j.omega.2009.10.008.
|
[15]
|
G. J. Burke, J. Carrillo and A. J. Vakharia, Heuristics for sourcing from multiple suppliers with alternative quantity discounts, European Journal of Operational Research, 186 (2008), 317-329.
doi: 10.1016/j.ejor.2007.01.019.
|
[16]
|
A. Chaabane, A. Ramudhin and M. Paquet, Design of sustainable supply chains under the emission trading scheme, International Journal of Production Economics, 135 (2012), 37-49.
doi: 10.1016/j.ijpe.2010.10.025.
|
[17]
|
J.-M. Chen and C.-I. Chang, The co-opetitive strategy of a closed-loop supply chain with remanufacturing, Transportation Research Part E: Logistics and Transportation Review, 48 (2012), 387-400.
doi: 10.1016/j.tre.2011.10.001.
|
[18]
|
Y.-W. Chen, L.-C. Wang, A. Wang and T.-L. Chen, A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry, Robotics and Computer-Integrated Manufacturing, 43 (2017), 111-123.
doi: 10.1016/j.rcim.2015.10.006.
|
[19]
|
Y.-H. Cheng and F. Lee, Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan, Industrial Marketing Management, 39 (2010), 1111-1119.
doi: 10.1016/j.indmarman.2009.10.004.
|
[20]
|
K. Das and N. R. Posinasetti, Addressing environmental concerns in closed loop supply chain design and planning, International Journal of Production Economics, 163 (2015), 34-47.
doi: 10.1016/j.ijpe.2015.02.012.
|
[21]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[22]
|
K. Devika, A. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, European Journal of Operational Research, 235 (2014), 594-615.
doi: 10.1016/j.ejor.2013.12.032.
|
[23]
|
J. Dong, L. Jiang, W. Lu and Q. Guo, Closed-loop supply chain models with product remanufacturing under random demand, Optimization, 70 (2021), 27-53.
doi: 10.1080/02331934.2019.1696341.
|
[24]
|
F. Du and G. W. Evans, A bi-objective reverse logistics network analysis for post-sale service, Computers & Operations Research, 35 (2008), 2617-2634.
doi: 10.1016/j.cor.2006.12.020.
|
[25]
|
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), 39–43.
|
[26]
|
T. Efendigil, S. Önüt and E. Kongar, A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness, Computers & Industrial Engineering, 54 (2008), 269-287.
doi: 10.1016/j.cie.2007.07.009.
|
[27]
|
B. Fahimnia, J. Sarkis, F. Dehghanian, N. Banihashemi and S. Rahman, The impact of carbon pricing on a closed-loop supply chain: An Australian case study, Journal of Cleaner Production, 59 (2013), 210-225.
doi: 10.1016/j.jclepro.2013.06.056.
|
[28]
|
H. Fallah, H. Eskandari and M. S. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.
doi: 10.1016/j.jmsy.2015.01.005.
|
[29]
|
M. Fareeduddin, A. Hassan, M. N. Syed and S. Selim, The impact of carbon policies on closed-loop supply chain network design, Procedia CIRP, 26 (2015), 335-340.
doi: 10.1016/j.procir.2014.07.042.
|
[30]
|
A. M. Fathollahi-Fard, F. Gholian-Jouybari, M. M. Paydar and M. Hajiaghaei-Keshteli, A bi-objective stochastic closed-loop supply chain network design problem considering downside risk, Industrial Engineering & Management Systems, 16 (2017), 342-362.
doi: 10.7232/iems.2017.16.3.342.
|
[31]
|
A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, A stochastic multi-objective model for a closed-loop supply chain with environmental considerations, Applied Soft Computing, 69 (2018), 232-249.
doi: 10.1016/j.asoc.2018.04.055.
|
[32]
|
A. M. FathollahiFard and M. Hajaghaei-Keshteli, A tri-level location-allocation model for forward/reverse supply chain, Applied Soft Computing, 62 (2018b), 328-346.
doi: 10.1016/j.asoc.2017.11.004.
|
[33]
|
A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and S. Mirjalili, Multi-objective stochastic closed-loop supply chain network design with social considerations, Applied Soft Computing, 71 (2018), 505-525.
doi: 10.1016/j.asoc.2018.07.025.
|
[34]
|
Z. Feng, T. Xiao and D. J. Robb, Environmentally responsible closed-loop supply chain models with outsourcing and authorization options, Journal of Cleaner Production, 278 (2021), 123791.
doi: 10.1016/j.jclepro.2020.123791.
|
[35]
|
M. R. Galbreth, J. A. Hill and S. Handley, An investigation of the value of cross-docking for supply chain management, Journal of Business Logistic, 29 (2008), 225-239.
doi: 10.1002/j.2158-1592.2008.tb00076.x.
|
[36]
|
H. Gholizadeh and H. Fazlollahtabar, Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry, Computers & Industrial Engineering, 147 (2020), 106653.
doi: 10.1016/j.cie.2020.106653.
|
[37]
|
M. Ghomi-Avili, S. G. J. Naeini, R. Tavakkoli-Moghaddam and A. Jabbarzadeh, A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188 (2018), 425-442.
doi: 10.1016/j.jclepro.2018.03.273.
|
[38]
|
A. Goli and S. M. R. Davoodi, Coordination policy for production and delivery scheduling in the closed loop supply chain, Production Engineering, 12 (2018), 621-631.
doi: 10.1007/s11740-018-0841-0.
|
[39]
|
A. Goli, E. B. Tirkolaee and G.-W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, Logistics Operations and Management for Recycling and Reuse, (2020), 99–124.
doi: 10.1007/978-3-642-33857-1_6.
|
[40]
|
A. Goli, H. K. Zare, R. Tavakkoli-Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.
doi: 10.1111/coin.12228.
|
[41]
|
P. Guarnieri, V. A. Sobreiro, M. S. Nagano and A. L. M. Serrano, The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: A Brazilian case, Journal of Cleaner Production, 96 (2015), 209-219.
doi: 10.1016/j.jclepro.2014.05.040.
|
[42]
|
X. Hong, L. Xu, P. Du and W. Wang, Joint advertising, pricing and collection decisions in a closed-loop supply chain, International Journal of Production Economics, 167 (2015), 12-22.
doi: 10.1016/j.ijpe.2015.05.001.
|
[43]
|
Z.-H. Hu, J.-B. Sheu, L. Zhao and C.-C. Lu, A dynamic closed-loop vehicle routing problem with uncertainty and incompatible goods, Transportation Research Part C: Emerging Technologies, 55 (2015), 273-297.
doi: 10.1016/j.trc.2015.01.010.
|
[44]
|
H. Huang, Y. He and D. Li, Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration, Journal of Cleaner Production, 180 (2018), 280-296.
doi: 10.1016/j.jclepro.2018.01.152.
|
[45]
|
N. Karimi, M. Zandieh and H. R. Karamooz, Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach, Expert Systems with Applications, 37 (2010), 4024-4032.
doi: 10.1016/j.eswa.2009.09.005.
|
[46]
|
S. Kassem and M. Chen, Solving reverse logistics vehicle routing problems with time windows, The International Journal of Advanced Manufacturing Technology, 68 (2013), 57-68.
doi: 10.1007/s00170-012-4708-9.
|
[47]
|
O. Kaya and B. Urek, A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain, Computers & Operations Research, 65 (2016), 93-103.
doi: 10.1016/j.cor.2015.07.005.
|
[48]
|
A. Kheirkhah and S. Rezaei, Using cross-docking operations in a reverse logistics network design: A new approach, Production Engineering, 10 (2016), 175-184.
doi: 10.1007/s11740-015-0646-3.
|
[49]
|
H. Kim, J. Yang and K.-D. Lee, Vehicle routing in reverse logistics for recycling end-of-life consumer electronic goods in South Korea, Transportation Research Part D: Transport and Environment, 14 (2009), 291-299.
doi: 10.1016/j.trd.2009.03.001.
|
[50]
|
H. J. Ko and G. W. Evans, A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers & Operations Research, 34 (2007), 346-366.
doi: 10.1016/j.cor.2005.03.004.
|
[51]
|
J. Krarup and P. M. Pruzan, The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.
doi: 10.1016/0377-2217(83)90181-9.
|
[52]
|
L. Kroon and G. Vrijens, Returnable containers: An example of reverse logistics, International Journal of Physical Distribution & Logistics Management, 25 (1995), 56-68.
doi: 10.1108/09600039510083934.
|
[53]
|
K. Lieckens and N. Vandaele, Reverse logistics network design with stochastic lead times, Computers & Operations Research, 34 (2007), 395-416.
doi: 10.1016/j.cor.2005.03.006.
|
[54]
|
R. Ma, L. Yao, M. Jin, P. Ren and Z. Lv, Robust environmental closed-loop supply chain design under uncertainty, Chaos, Solitons & Fractals, 89 (2016), 195-202.
doi: 10.1016/j.chaos.2015.10.028.
|
[55]
|
H. Maghsoudlou, M. R. Kahag, S. T. A. Niaki and H. Pourvaziri, Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution, Computers & Industrial Engineering, 99 (2016), 41-62.
doi: 10.1016/j.cie.2016.07.008.
|
[56]
|
M. Mahmoudzadeh, S. J. Sadjadi and S. Mansour, Robust optimal dynamic production/pricing policies in a closed-loop system, Applied Mathematical Modelling, 37 (2013), 8141-8161.
doi: 10.1016/j.apm.2013.03.008.
|
[57]
|
B. K. Mawandiya, J. K. Jha and J. Thakkar, Production-inventory model for two-echelon closed-loop supply chain with finite manufacturing and remanufacturing rates, International Journal of Systems Science: Operations & Logistics, 4 (2017), 199-218.
doi: 10.1080/23302674.2015.1121303.
|
[58]
|
L. Meade and J. Sarkis, A conceptual model for selecting and evaluating third-party reverse logistics providers, Supply Chain Management: An International Journal, 7 (2002), 283-295.
doi: 10.1108/13598540210447728.
|
[59]
|
H. Min and H.-J. Ko, The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, International Journal of Production Economics, 113 (2008), 176-192.
doi: 10.1016/j.ijpe.2007.01.017.
|
[60]
|
S. Mitra, Inventory management in a two-echelon closed-loop supply chain with correlated demands and returns, Computers & Industrial Engineering, 62 (2012), 870-879.
doi: 10.1016/j.cie.2011.12.008.
|
[61]
|
B. Mohamadpour Tosarkani and S. Hassanzadeh Amin, An environmental optimization model to configure a hybrid forward and reverse supply chain network under uncertainty, Computers & Chemical Engineering, 121 (2019), 540-555.
doi: 10.1016/j.compchemeng.2018.11.014.
|
[62]
|
A. Mohtashami, M. Tavana, F. J. Santos-Arteaga and A. Fallahian-Najafabadi, A novel multi-objective meta-heuristic model for solving cross-docking scheduling problems, Applied Soft Computing, 31 (2015), 30-47.
doi: 10.1016/j.asoc.2015.02.030.
|
[63]
|
Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption, Journal of Cleaner Production, 242 (2010), 118452.
doi: 10.1016/j.jclepro.2019.118452.
|
[64]
|
H. Moradi, M. Zandieh and I. Mahdavi, Non-dominated ranked genetic algorithm for a multi-objective mixed-model assembly line sequencing problem, International Journal of Production Research, 49 (2011), 3479-3499.
doi: 10.1080/00207540903433882.
|
[65]
|
S. Nayeri, M. M. Paydar, E. Asadi-Gangraj and S. Emami, Multi-objective fuzzy robust optimization approach to sustainable closed-loop supply chain network design, Computers & Industrial Engineering, 148 (2020), 106716.
doi: 10.1016/j.cie.2020.106716.
|
[66]
|
K. Pant, V. S. Yadav and A. Singh, Design of multi-tier multi-time horizon closed-loop supply chain network with sustainability under uncertain environment for Indian paper industry, International Journal of Sustainable Engineering, 14 (2020), 107-122.
doi: 10.1080/19397038.2020.1774817.
|
[67]
|
S. Pazhani, N. Ramkumar, T. T. Narendran and K. Ganesh, A bi-objective network design model for multi-period, multi-product closed-loop supply chain, Journal of Industrial and Production Engineering, 30 (2013), 264-280.
doi: 10.1080/21681015.2013.830648.
|
[68]
|
M. S. Pishvaee, R. Z. Farahani and W. Dullaert, A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Computers & Operations Research, 37 (2010), 1100-1112.
doi: 10.1016/j.cor.2009.09.018.
|
[69]
|
M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007.
|
[70]
|
S. H. A. Rahmati, M. Zandieh and M. Yazdani, Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem, The International Journal of Advanced Manufacturing Technology, 64 (2013), 915-932.
doi: 10.1007/s00170-012-4051-1.
|
[71]
|
Y. Ranjbar, H. Sahebi, J. Ashayeri and A. Teymouri, A competitive dual recycling channel in a three-level closed loop supply chain under different power structures: Pricing and collecting decisions, Journal of Cleaner Production, 272 (2020), 122623.
doi: 10.1016/j.jclepro.2020.122623.
|
[72]
|
S. Rezaei and A. Kheirkhah, A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations, Computational and Mathematical Organization Theory, 24 (2018), 51-98.
doi: 10.1007/s10588-017-9247-3.
|
[73]
|
S. Rezapour, R. Z. Farahani, B. Fahimnia, K. Govindan and Y. Mansouri, Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93 (2015), 251-272.
doi: 10.1016/j.jclepro.2014.12.095.
|
[74]
|
Y. M. B. Saavedra, A. P. B. Barquet, H. Rozenfeld, F. A. Forcellini and A. R. Ometto, Remanufacturing in Brazil: Case studies on the automotive sector, Journal of Cleaner Production, 53 (2013), 267-276.
doi: 10.1016/j.jclepro.2013.03.038.
|
[75]
|
R. Sadeghi Rad and N. Nahavandi, A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount, Journal of Cleaner Production, 196 (2018), 1549-1565.
doi: 10.1016/j.jclepro.2018.06.034.
|
[76]
|
N. Sahebjamnia, A. M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, Journal of Cleaner Production, 196 (2018), 273-296.
doi: 10.1016/j.jclepro.2018.05.245.
|
[77]
|
M. Saidi Mehrabad, A. Aazami and A. Goli, A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach, Journal of Industrial and Systems Engineering, 10 (2017), 140-160.
|
[78]
|
J. R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Master's thesis, Massachusetts Institute of Technology, Cambridge, 1995.
|
[79]
|
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003.
|
[80]
|
F. Sgarbossa and I. Russo, A proactive model in sustainable food supply chain: Insight from a case study, International Journal of Production Economics, 183 (2017), 596-606.
doi: 10.1016/j.ijpe.2016.07.022.
|
[81]
|
D. Y. Sha and C.-Y. Hsu, A new particle swarm optimization for the open shop scheduling problem, Computers & Operations Research, 35 (2008), 3243-3261.
doi: 10.1016/j.cor.2007.02.019.
|
[82]
|
J. Shi, G. Zhang and J. Sha, Optimal production planning for a multi-product closed loop system with uncertain demand and return, Computers & Operations Research, 38 (2011), 641-650.
doi: 10.1016/j.cor.2010.08.008.
|
[83]
|
Th. Spengler, H. Püchert, T. Penkuhn and O. Rentz, Environmental integrated production and recycling management, European Journal of Operational Research, 97 (1997), 308-326.
doi: 10.1007/978-3-642-17036-2_22.
|
[84]
|
G. Taguchi, Introduction to Quality Engineering: Designing Quality Into Products and Processes, Asian Productivity Organization, Tokyo, 1986.
|
[85]
|
M. Talaei, B. F. Moghaddam, M. S. Pishvaee, A. Bozorgi-Amiri and S. Gholamnejad, A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry, Journal of Cleaner Production, 113 (2016), 662-673.
doi: 10.1016/j.jclepro.2015.10.074.
|
[86]
|
A. A. Taleizadeh, F. Haghighi and S. T. A. Niaki, Modeling and solving a sustainable closed loop supply chain problem with pricing decisions and discounts on returned products, Journal of Cleaner Production, 207 (2019), 163-181.
doi: 10.1016/j.jclepro.2018.09.198.
|
[87]
|
Z. G. Tao, Z. Y. Guang, S. Hao, H. J. Song and D. G. Xin, Multi-period closed-loop supply chain network equilibrium with carbon emission constraints, Resources, Conservation and Recycling, 104 (2015), 354–365.
doi: 10.1016/j.resconrec.2015.07.016.
|
[88]
|
S. A. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010.
|
[89]
|
B. Vahdani and M. Mohammadi, A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system, International Journal of Production Economics, 170 (2015), 67-87.
doi: 10.1016/j.ijpe.2015.08.020.
|
[90]
|
V. P. Vinay and R. Sridharan, Taguchi method for parameter design in ACO algorithm for distribution-allocation in a two-stage supply chain, The International Journal of Advanced Manufacturing Technology, 64 (2013), 1333-1343.
doi: 10.1007/s00170-012-4104-5.
|
[91]
|
N. Zarbakhshnia, H. Soleimani and H. Ghaderi, Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria, Applied Soft Computing, 65 (2018), 307-319.
doi: 10.1016/j.asoc.2018.01.023.
|
[92]
|
M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri and M. Mohammadi, Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty, Transportation Research Part E: Logistics and Transportation Review, 89 (2016), 182-214.
doi: 10.1016/j.tre.2016.02.011.
|
[93]
|
M. Zohal and H. Soleimani, Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry, Journal of Cleaner Production, 133 (2016), 314-337.
doi: 10.1016/j.jclepro.2016.05.091.
|
[94]
|
J. P. S. Zuluaga, M. Thiell and R. C. Perales, Reverse cross-docking, Omega, 66 (2017), 48-57.
doi: 10.1016/j.omega.2016.01.010.
|