• Previous Article
    Equity-based incentive to coordinate shareholder-manager interests under information asymmetry
  • JIMO Home
  • This Issue
  • Next Article
    Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain
doi: 10.3934/jimo.2021121
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Robust optimal asset-liability management with penalization on ambiguity

School of Mathematical Sciences and Institute of Finance and Statistics, Nanjing Normal University, Jiangsu 210023, China

* Corresponding author: Hui Mi

Received  May 2020 Revised  February 2021 Early access July 2021

Fund Project: The research was supported by National Natural Science Foundation of China (Grant No.61304065) and the Qing Lan Project of Jiangsu Province

In this paper, we study the robust optimal asset- problems for an ambiguity-averse investor, who does not have perfect information in the drift terms of the risky asset and liability processes. Two different kinds of objectives are considered: $ (i) $ Maximizing the minimal expected utility of the terminal wealth; $ (ii) $ Minimizing the maximal cumulative deviation. The ambiguity in both problems is described by a set of equivalent measures to the reference model. By the stochastic dynamic programming approach and Hamilton-Jacobi-Bellman (HJB) equation, we derive closed-form expressions for the value function and corresponding robust optimal investment strategy in each problem. Furthermore, some special cases are provided to investigate the effect of model uncertainty on the optimal investment strategy. Finally, the economic implication and parameter sensitivity are analyzed by some numerical examples. We also compare the robust optimal investment strategies in two different problems.

Citation: Yu Yuan, Hui Mi. Robust optimal asset-liability management with penalization on ambiguity. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021121
References:
[1]

E. L. AndersonL. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[2]

N. Branger and L. S. Larsen, Robust portfolio choice with uncertainty about jump and diffusion risk, Journal of Banking and Finance, 37 (2013), 5036-5047. 

[3]

H. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182. 

[4]

M. C. Chiu and D. Li, Asset and liability management under a continuous-time mean-variance optimization framework, Insurance Math. Econom., 39 (2006), 330-355.  doi: 10.1016/j.insmatheco.2006.03.006.

[5]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liability, European J. Oper. Res., 223 (2012), 785-793.  doi: 10.1016/j.ejor.2012.07.009.

[6]

N. Gülpinar and D. Pachamanova, A robust optimization approach to asset-liability management under time-varying investment opportunities, Journal of Banking & Finance, 37 (2013), 2031-2041. 

[7]

L. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. 

[8]

Y. HuangX. Yang and J. Zhou, Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Math. Methods Oper. Res., 85 (2017), 305-326.  doi: 10.1007/s00186-017-0570-8.

[9]

R. Josa-Fombellida and J. P. Rincón-Zapatero, Optimal investment decisions with a liability: The case of defined benefit pension plans, Insurance Math. Econom., 39 (2006), 81-98.  doi: 10.1016/j.insmatheco.2006.01.005.

[10]

D. LiY. Shen and Y. Zeng, Dynamic derivative-based investment strategy for mean-variance asset-liability management with stochastic volatility, Insurance Math. Econom., 78 (2018), 72-86.  doi: 10.1016/j.insmatheco.2017.11.006.

[11]

D. LiY. Zeng and H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuar. J., 2018 (2018), 145-171.  doi: 10.1080/03461238.2017.1309679.

[12]

K. LuoG. Wang and Y. Hu, Optimal portfolio on tracking the expected wealth process with liquidity constraints, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 483-490.  doi: 10.1016/S0252-9602(11)60249-X.

[13]

S. LuoM. Wang and W. Zhu, Maximizing a robust goal-reaching probability with penalization on ambiguity, J. Comput. Appl. Math., 348 (2019), 261-281.  doi: 10.1016/j.cam.2018.08.049.

[14]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983. 

[15]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. 

[16]

S. Mataramvura and B. Øksendal, Risk minimizing portfolios and HJBI equations for stochastic differential games, Stochastics, 80 (2008), 317-337.  doi: 10.1080/17442500701655408.

[17]

J. PanS. Hu and X. Zhou, Optimal investment strategy for asset-liability management under the Heston model, Optimization, 68 (2019), 895-920.  doi: 10.1080/02331934.2018.1561691.

[18]

J. Pan and Q. Xiao, Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Math. Methods Oper. Res., 85 (2017), 491-519.  doi: 10.1007/s00186-017-0580-6.

[19]

J. Pan and Q. Xiao, Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, J. Comput. Appl. Math., 317 (2017), 371-387.  doi: 10.1016/j.cam.2016.11.037.

[20]

C. S. Pun and H. Y. Wong, Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance Math. Econom., 62 (2015), 245-256.  doi: 10.1016/j.insmatheco.2015.03.030.

[21]

Z. SunX. Zheng and X. Zhang, Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk, J. Math. Anal. Appl., 446 (2017), 1666-1686.  doi: 10.1016/j.jmaa.2016.09.053.

[22]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance Math. Econom., 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[23]

B. YiF. ViensZ. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scand. Actuar. J., 2015 (2015), 725-751.  doi: 10.1080/03461238.2014.883085.

[24]

Y. ZengD. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance Math. Econom., 66 (2016), 138-152.  doi: 10.1016/j.insmatheco.2015.10.012.

[25]

Y. ZengZ. Li and H. Wu, Optimal portfolio selection in a L$\acute{e}$vy market with uncontrolled cash flow and only risky assets, Internat. J. Control, 86 (2013), 426-437.  doi: 10.1080/00207179.2012.735373.

show all references

References:
[1]

E. L. AndersonL. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[2]

N. Branger and L. S. Larsen, Robust portfolio choice with uncertainty about jump and diffusion risk, Journal of Banking and Finance, 37 (2013), 5036-5047. 

[3]

H. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182. 

[4]

M. C. Chiu and D. Li, Asset and liability management under a continuous-time mean-variance optimization framework, Insurance Math. Econom., 39 (2006), 330-355.  doi: 10.1016/j.insmatheco.2006.03.006.

[5]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liability, European J. Oper. Res., 223 (2012), 785-793.  doi: 10.1016/j.ejor.2012.07.009.

[6]

N. Gülpinar and D. Pachamanova, A robust optimization approach to asset-liability management under time-varying investment opportunities, Journal of Banking & Finance, 37 (2013), 2031-2041. 

[7]

L. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. 

[8]

Y. HuangX. Yang and J. Zhou, Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Math. Methods Oper. Res., 85 (2017), 305-326.  doi: 10.1007/s00186-017-0570-8.

[9]

R. Josa-Fombellida and J. P. Rincón-Zapatero, Optimal investment decisions with a liability: The case of defined benefit pension plans, Insurance Math. Econom., 39 (2006), 81-98.  doi: 10.1016/j.insmatheco.2006.01.005.

[10]

D. LiY. Shen and Y. Zeng, Dynamic derivative-based investment strategy for mean-variance asset-liability management with stochastic volatility, Insurance Math. Econom., 78 (2018), 72-86.  doi: 10.1016/j.insmatheco.2017.11.006.

[11]

D. LiY. Zeng and H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuar. J., 2018 (2018), 145-171.  doi: 10.1080/03461238.2017.1309679.

[12]

K. LuoG. Wang and Y. Hu, Optimal portfolio on tracking the expected wealth process with liquidity constraints, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 483-490.  doi: 10.1016/S0252-9602(11)60249-X.

[13]

S. LuoM. Wang and W. Zhu, Maximizing a robust goal-reaching probability with penalization on ambiguity, J. Comput. Appl. Math., 348 (2019), 261-281.  doi: 10.1016/j.cam.2018.08.049.

[14]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983. 

[15]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. 

[16]

S. Mataramvura and B. Øksendal, Risk minimizing portfolios and HJBI equations for stochastic differential games, Stochastics, 80 (2008), 317-337.  doi: 10.1080/17442500701655408.

[17]

J. PanS. Hu and X. Zhou, Optimal investment strategy for asset-liability management under the Heston model, Optimization, 68 (2019), 895-920.  doi: 10.1080/02331934.2018.1561691.

[18]

J. Pan and Q. Xiao, Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Math. Methods Oper. Res., 85 (2017), 491-519.  doi: 10.1007/s00186-017-0580-6.

[19]

J. Pan and Q. Xiao, Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, J. Comput. Appl. Math., 317 (2017), 371-387.  doi: 10.1016/j.cam.2016.11.037.

[20]

C. S. Pun and H. Y. Wong, Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance Math. Econom., 62 (2015), 245-256.  doi: 10.1016/j.insmatheco.2015.03.030.

[21]

Z. SunX. Zheng and X. Zhang, Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk, J. Math. Anal. Appl., 446 (2017), 1666-1686.  doi: 10.1016/j.jmaa.2016.09.053.

[22]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance Math. Econom., 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[23]

B. YiF. ViensZ. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scand. Actuar. J., 2015 (2015), 725-751.  doi: 10.1080/03461238.2014.883085.

[24]

Y. ZengD. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance Math. Econom., 66 (2016), 138-152.  doi: 10.1016/j.insmatheco.2015.10.012.

[25]

Y. ZengZ. Li and H. Wu, Optimal portfolio selection in a L$\acute{e}$vy market with uncontrolled cash flow and only risky assets, Internat. J. Control, 86 (2013), 426-437.  doi: 10.1080/00207179.2012.735373.

Figure 1.  The influence of $ \mu $ and $ \rho $ on the robust optimal investment strategy
Figure 2.  The influence of $ b $ and $ \beta_1 $ on the robust optimal investment strategy
Figure 3.  The influence of $ R $ and $ y_0 $ on the robust optimal investment strategy
Table 1.  The basic parameters
r μ σ a b ρ t T m β1 β2 x R y0
0.03 0.08 0.25 0.1 0.2 0.3 0 10 0.5 0.5 0.5 1 0.1 1
r μ σ a b ρ t T m β1 β2 x R y0
0.03 0.08 0.25 0.1 0.2 0.3 0 10 0.5 0.5 0.5 1 0.1 1
[1]

Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106

[2]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

[3]

Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial and Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535

[4]

Xiaowei Chen, Qianlong Liu, Dan A. Ralescu. A bi-level optimization model for the asset-liability management of insurance companies. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022074

[5]

Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026

[6]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[7]

Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1203-1233. doi: 10.3934/jimo.2020018

[8]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial and Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[9]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011

[10]

Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial and Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141

[11]

Pengxu Xie, Lihua Bai, Huayue Zhang. Optimal proportional reinsurance and pairs trading under exponential utility criterion for the insurer. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022020

[12]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029

[13]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control and Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[14]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[15]

Zheng Dou, Shaoyong Lai. Optimal contracts and asset prices in a continuous-time delegated portfolio management problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022083

[16]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial and Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[17]

Constantin Christof, Dominik Hafemeyer. On the nonuniqueness and instability of solutions of tracking-type optimal control problems. Mathematical Control and Related Fields, 2022, 12 (2) : 421-431. doi: 10.3934/mcrf.2021028

[18]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control and Related Fields, 2022, 12 (2) : 275-301. doi: 10.3934/mcrf.2021022

[19]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[20]

C.E.M. Pearce, J. Piantadosi, P.G. Howlett. On an optimal control policy for stormwater management in two connected dams. Journal of Industrial and Management Optimization, 2007, 3 (2) : 313-320. doi: 10.3934/jimo.2007.3.313

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (408)
  • HTML views (442)
  • Cited by (0)

Other articles
by authors

[Back to Top]