\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints

  • * Corresponding author: Yigui Ou

    * Corresponding author: Yigui Ou 

Supported by NNSF of China (No. 11961018), NSF of Hainan Province (No. 120QN175) and Innovative Project for Postgraduates of Hainan Province (No. Hys2020-107)

Abstract Full Text(HTML) Figure(4) / Table(1) Related Papers Cited by
  • Motivated by recent derivative-free projection methods proposed in the literature for solving nonlinear constrained equations, in this paper we propose a unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Under mild conditions, the global convergence and convergence rate of the proposed method are established. In order to verify the feasibility and effectiveness of the model, a practical algorithm is devised and the corresponding numerical experiments are reported, which show that the proposed practical method is efficient and can be applied to solve large-scale nonsmooth equations. Moreover, the proposed practical algorithm is also extended to solve the obstacle problem.

    Mathematics Subject Classification: Primary: 90C25, 65H10; Secondary: 65K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Performance profile for the number of iterations

    Figure 2.  Performance profile for the number of function evaluations

    Figure 3.  Performance profile for the CPU time

    Figure 4.  An elastic string stretched over an obstacle

    Table 1.  Numerical test results for the obstale problem

    n Algorithm5.1 OLA (CPU/FN) XZA (CPU/FN)
    50 1.664626/9.7218e-06 1.814302/7.1023e-06 4.972539/9.9601e-06
    100 10.632101/5.9094e-05 10.647692/8.0831e-05 39.520620/1.3001e-05
    500 90.768111/0.0161 167.333069/0.0174 459.419363/0.0279
     | Show Table
    DownLoad: CSV
  • [1] A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), Paper No. 129, 35 pp. doi: 10.1007/s40314-020-01151-5.
    [2] K. Amini and A. Kamandi, A new line search strategy for finding separating hyperplane in projection-based methods, Numer. Algorithms, 70 (2015), 559-570.  doi: 10.1007/s11075-015-9961-1.
    [3] A. M. AwwalP. Kumama and A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Applied Numerical Mathematics, 145 (2019), 507-520.  doi: 10.1016/j.apnum.2019.05.012.
    [4] S. Babaie-Kafaki and Z. Aminifard, Two-parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length, Numer. Algorithms, 82 (2019), 1345-1357.  doi: 10.1007/s11075-019-00658-1.
    [5] S. C. Billups and K. G. Murty, Complementarity problems, J. Comput. Appl. Math., 124 (2000), 303-318.  doi: 10.1016/S0377-0427(00)00432-5.
    [6] E. D. Dolan and J. J. Mor$\acute{e}$, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.  doi: 10.1007/s101070100263.
    [7] P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp. doi: 10.1007/s10092-018-0291-2.
    [8] A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distance for constrained optimization, Optimization, 41 (1997), 257-278.  doi: 10.1080/02331939708844339.
    [9] C.-X. Jia and D.-T. Zhu, Projected gradient trust-region method for solving nonlinear systems with convex constraints, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 57-69.  doi: 10.1007/s11766-011-1956-7.
    [10] C. KanzowN. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, J. Comput. Appl. Math., 173 (2005), 321-343.  doi: 10.1016/j.cam.2004.03.015.
    [11] M. KoorapetseP. Kaelo and E. R. Offen, A scaled derivative-free projection method for solving nonlinear monotone equations, Bull. Iranian Math. Soc., 45 (2019), 755-770.  doi: 10.1007/s41980-018-0163-1.
    [12] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numerical Algorithms, 82 (2019), 245-262.  doi: 10.1007/s11075-018-0603-2.
    [13] J. Liu and S. Li, Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13 (2017), 283-295.  doi: 10.3934/jimo.2016017.
    [14] K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Transactions on Mathematical Software, 16 (1990), 143-151.  doi: 10.1145/78928.78930.
    [15] J. M. Ortega and  W. C. RheinboldtIterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. 
    [16] Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints, J. Appl. Math. Comput., 56 (2018), 195-216.  doi: 10.1007/s12190-016-1068-x.
    [17] Y. Ou and Y. Liu, Supermemory gradient methods for monotone nonlinear equations with convex constraints, Comput. Appl. Math., 36 (2017), 259-279.  doi: 10.1007/s40314-015-0228-1.
    [18] J.-S. Pang, Inexact Newton methods for the nonlinear complementary problem, Math. Programming, 36 (1986), 54-71.  doi: 10.1007/BF02591989.
    [19] B. T. Polyak, Introduction to Optimization, Optimization Software Incorporation, Publications Division, New York, NY, USA, 1987.
    [20] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for system of monotone equations, in: M. Fukushima and L.Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, Dordrecht, (1999), 355–369. doi: 10.1007/978-1-4757-6388-1_18.
    [21] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.  doi: 10.1137/S0363012997317475.
    [22] W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.
    [23] Z. WanJ. GuoJ. J. Liu and W. Y. Liu, A modified spectral conjugate gradient projectionmethod for signal recovery, Signal Image Video Process, 12 (2018), 1455-1462. 
    [24] C. WangY. Wang and C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res., 66 (2007), 33-46.  doi: 10.1007/s00186-006-0140-y.
    [25] X. Y. WangS. J. Li and X. P. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133-145.  doi: 10.1007/s10092-015-0140-5.
    [26] A. J. Wood and B. F. Wollenberg, Power Generations, Operations, and Control, Wiley, New York, 1996.
    [27] Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.  doi: 10.1016/j.jmaa.2013.04.017.
    [28] Z. YuJ. LinJ. SunY. XiaoL. Liu and Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.  doi: 10.1016/j.apnum.2009.04.004.
    [29] Y.-B. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with variational inequality and is applications, SIAM J. Optim., 11 (2001), 962-973.  doi: 10.1137/S1052623499357957.
    [30] L. Zheng, A new projection algorithm for solving a system of nonlinear equations with convex constraints, Bull. Korean Math. Soc., 50 (2013), 823-832.  doi: 10.4134/BKMS.2013.50.3.823.
  • 加载中

Figures(4)

Tables(1)

SHARE

Article Metrics

HTML views(468) PDF downloads(505) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return