[1]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[2]
|
J. Benesty and Y. Huang, A Perspective on Single-Channel Frequency-Domain Speech Enhancement, San Rafael: Morgan and Claypool Publishers, 2010.
doi: 10.2200/S00344ED1V01Y201104SAP008.
|
[3]
|
S. F. Boll, Supression of acoustic noise in speech using spectral subtraction, IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-27 (1979), 113-120.
|
[4]
|
O. Burdakov, Y. Dai and N. Huang, Stabilized Barzilai-Borwein method, J. Comp. Math., 37 (2019), 916-936.
doi: 10.4208/jcm.1911-m2019-0171.
|
[5]
|
E. J. Candés, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083.
|
[6]
|
E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507.
|
[7]
|
E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, (2008), 21-30.
|
[8]
|
H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Processing, 106 (2015), 10-14.
doi: 10.1016/j.sigpro.2014.06.028.
|
[9]
|
H. H. Dam and S. Nordholm, Accelerated gradient with optimal step size for second-order blind signal separation, Multidimens. Syst. Signal Process., 29 (2018), 903-919.
doi: 10.1007/s11045-017-0478-8.
|
[10]
|
T. Esch and P. Vary, Efficient musical noise suppression for speech enhancement system, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, (2009), 4409-4412.
doi: 10.1109/ICASSP.2009.4960607.
|
[11]
|
P. K. Ghosh, A. Tsiartas and S. Narayanan, Robust voice activity detection using long-term signal variability, IEEE Transactions on Audio, Speech and Language Processing, 19 (2011), 600-613.
doi: 10.1109/TASL.2010.2052803.
|
[12]
|
S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, An interior-point method for large-scale $l_1$-regularized least squares, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 606-617.
|
[13]
|
H. Li, C. Fang and Z. Lin, Accelerated first-order optimization algorithms for machine learning, Proceedings of the IEEE, (2020), 1-16.
|
[14]
|
P. C. Loizou, Speech Enhancement: Theory and Practice, CRC press, Boca Raton, 2013.
doi: 10.1201/9781420015836.
|
[15]
|
S. Y. Low, Compressive speech enhancement in the modulation domain, Speech Communication, 102 (2018), 87-99.
doi: 10.1016/j.specom.2018.08.003.
|
[16]
|
S. Y. Low, D. S. Pham and S. Venkatesh, Compressive speech enhancement, Speech Communication, 55 (2013), 757-768.
doi: 10.1016/j.specom.2013.03.003.
|
[17]
|
R. Martin, Noise power spectral density estimation based on optimal smoothing and minimum statistics, IEEE Transactions on Speech and Audio Processing, 9 (2001), 504-512.
doi: 10.1109/89.928915.
|
[18]
|
R. Miyazaki, H. Saruwatari, T. Inoue, K. Shikano and K. Kondo, Musical-noise-free speech enhancement: Theory and evaluation, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2012), 4565-4568.
doi: 10.1109/ICASSP.2012.6288934.
|
[19]
|
M. Nazih, K. Minaoui and P. Comon, Using the proximal gradient and the accelerated proximal gradient as a canonical polyadic tensor decomposition algorithms in difficult situations, Signal Processing, 171 (2020), 107472.
doi: 10.1016/j.sigpro.2020.107472.
|
[20]
|
N. Parikh and S. Boyd, Proximal Algorithms, Foundation and Trends in Optimization, 1 (2013), 123-231.
|
[21]
|
A. W. Rix, J. G. Beerends, M. P. Hollier and A. P. Hekstra, Perceptual evaluation of speech quality (PESQ) - a new method for speech quality assessment of telephone networks and codecs, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2 (2001), 749-752.
doi: 10.1109/ICASSP.2001.941023.
|
[22]
|
M. Schmidt, Least squares optimization with l1-norm regularization, Technical Report CSP542B, 2005.
|
[23]
|
Y. Shi, S. Y. Low and K. F. C. Yiu, Hyper-parameterization of sparse reconstruction for speech enhancement, Applied Acoustics, 138 (2018), 72-79.
doi: 10.1016/j.apacoust.2018.03.020.
|
[24]
|
C. H. Taal, R. C. Hendriks, R. Heusdens and J. Jensen, A short-time objective intelligibility measure for time-frequency weighted noisy speech, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, (2010), 4214-4217.
doi: 10.1109/ICASSP.2010.5495701.
|
[25]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[26]
|
M. Torcoli, An improved measure of musical noise based on spectral kurtosis, 019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), (2019), 90-94.
doi: 10.1109/WASPAA.2019.8937195.
|
[27]
|
D. Wu, W. Zhu and M. N. S. Swamy, A compressive sensing method for noise reduction of speech and audio signals, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), (2011), 1-4.
doi: 10.1109/MWSCAS.2011.6026662.
|
[28]
|
Z. Zhang, Y. Xu, J. Yang, X. Li and D. Zhang, A Survey of Sparse Representation: Algorithms and Applications, IEEE Access, 3 (2015), 490-530.
|