[1]
|
R. Ahlswede and A. Winter, Strong converse for identification via quantum channels, IEEE Transactions on Information Theory, 48 (2002), 569-579.
doi: 10.1109/18.985947.
|
[2]
|
S. Ahmed and W. Xie, Relaxations and approximations of chance constraints under finite distributions, Math. Program., 170 (2018), 43-65.
doi: 10.1007/s10107-018-1295-z.
|
[3]
|
X. Bai, J. Sun and X. Zheng, An augmented Lagrangian decomposition method for chance-constrained optimization problems, INFORMS Journal on Computing, (2020).
doi: 10.1287/ijoc.2020.1001.
|
[4]
|
A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res. Lett., 25 (1999), 1-13.
doi: 10.1016/S0167-6377(99)00016-4.
|
[5]
|
A. Ben-Tal and A. Nemirovski, On safe tractable approximations of chance-constrained linear matrix inequalities, Math. Oper. Res., 34 (2009), 1-25.
doi: 10.1287/moor.1080.0352.
|
[6]
|
D. Bertsimas and V. Goyal, On the approximability of adjustable robust convex optimization under uncertainty, Math. Methods Oper. Res., 77 (2013), 323-343.
doi: 10.1007/s00186-012-0405-6.
|
[7]
|
W. Chen, M. Sim, J. Sun and C.-P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Oper. Res., 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712.
|
[8]
|
X. Chen, M. Sim and P. Sun, A robust optimization perspective on stochastic programming, Oper. Res., 55 (2007), 1058-1071.
doi: 10.1287/opre.1070.0441.
|
[9]
|
Z. Chen, M. Sim and H. Xu, Distributionally robust optimization with infinitely constrained ambiguity sets, Oper. Res., 67 (2019), 1328-1344.
doi: 10.1287/opre.2018.1799.
|
[10]
|
S.-S. Cheung, A. M.-C. So and K. Wang, Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization, SIAM J. Optim., 22 (2012), 1394-1430.
doi: 10.1137/110822906.
|
[11]
|
V. Feldman, C. Guzmán and S. Vempala, Statistical query algorithms for mean vector estimation and stochastic convex optimization, Mathematics of Operations Research, (2021).
doi: 10.1287/moor.2020.1111.
|
[12]
|
R. Gao and A.J. Kleywegt, Distributionally robust stochastic optimization with Wasserstein distance, arXiv preprint, arXiv: 1604.02199.
|
[13]
|
S. Guo, H. Xu and L. Zhang, Convergence analysis for mathematical programs with distributionally robust chance constraint, SIAM J. Optim., 27 (2017), 784-816.
doi: 10.1137/15M1036592.
|
[14]
|
L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach, Oper. Res., 59 (2011), 617-630.
doi: 10.1287/opre.1100.0910.
|
[15]
|
R. Jiang and Y. Guan, Data-driven chance constrained stochastic program, Math. Program., 158 (2016), 291-327.
doi: 10.1007/s10107-015-0929-7.
|
[16]
|
Z. Lin and Z. Bai, Probability Inequalities, Springer Science and Business Media, 2011.
|
[17]
|
P. Mohajerin Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations, Math. Program., 171 (2018), 115-166.
doi: 10.1007/s10107-017-1172-1.
|
[18]
|
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.
doi: 10.1137/050622328.
|
[19]
|
B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications, J. Optim. Theory Appl., 142 (2009), 399-416.
doi: 10.1007/s10957-009-9523-6.
|
[20]
|
I. Popescu, Robust mean-covariance solutions for stochastic optimization, Oper. Res., 55 (2007), 98-112.
doi: 10.1287/opre.1060.0353.
|
[21]
|
K. Postek, A. Ben-Tal, D. den Hertog and B. Melenberg, Robust optimization with ambiguous stochastic constraints under mean and dispersion information, Oper. Res., 66 (2018), 814-833.
doi: 10.1287/opre.2017.1688.
|
[22]
|
R. T. Rockafellar and R. J.-B. Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16 (1991), 119-147.
doi: 10.1287/moor.16.1.119.
|
[23]
|
G. Salvendy (Ed.), Handbook of Industrial Engineering: Technology and Operations Management, John Wiley and Sons, 2001.
|
[24]
|
J. E. Smith, Generalized Chebychev inequalities: Theory and applications in decision analysis, Oper. Res., 43 (1995), 807-825.
doi: 10.1287/opre.43.5.807.
|
[25]
|
W. Xie and S. Ahmed, Bicriteria approximation of chance-constrained covering problems, Oper. Res., 68 (2020), 516-533.
doi: 10.1287/opre.2019.1866.
|
[26]
|
W. Xie, S. Ahmed and R. Jiang, Optimized Bonferroni approximations of distributionally robust joint chance constraints, Mathematical Programming, (2019), 1–34.
|
[27]
|
W. Yang and H. Xu, Strong converse for identification via quantum channels, Math. Program., 155 (2016), 231-265.
doi: 10.1007/s10107-014-0842-5.
|
[28]
|
M. Zaghian, G.J. Lim and A. Khabazian, A chance-constrained programming framework to handle uncertainties in radiation therapy treatment planning, European J. Oper. Res., 266 (2018), 736-745.
doi: 10.1016/j.ejor.2017.10.018.
|
[29]
|
Y. Zhao, W. Zhang, W. Guo, S. Yu and F. Song, Exponential state observers for nonlinear systems with incremental quadratic constraints and output nonlinearities, Journal of Control, Automation and Electrical Systems, 29 (2018), 127-135.
doi: 10.1007/s40313-018-0369-8.
|