[1]
|
K. Arrow, L. Hurwicz and H. Uzawa, Studies in linear and non-linear programming, in Stanford Mathematical Studies in the Social Sciences, II, Vol. 2, Stanford University Press, Stanford, Calif., 1958.
|
[2]
|
X. Cai, D. Han and L. Xu, An improved first-order primal-dual algorithm with a new correction step, J. Global Optim., 57 (2013), 1419-1428.
doi: 10.1007/s10898-012-9999-8.
|
[3]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[4]
|
A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program. Ser. A, 159 (2016), 253-287.
doi: 10.1007/s10107-015-0957-3.
|
[5]
|
Y. Chen, G. Lan and Y. Ouyang, Optimal primal-dual methods for a class of saddle point problems, SIAM J. Optim., 24 (2014), 1779-1814.
doi: 10.1137/130919362.
|
[6]
|
E. Esser, X. Zhang and T. Chan, A general framework for a class of first-order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[7]
|
Y. Gao and D. Sun, Calibrating least squares semidefinite programming with equality and inequality constraints, SIAM J. Matrix Anal. Appl., 31 (2009), 1432-1457.
doi: 10.1137/080727075.
|
[8]
|
G. Gu, B. He and X. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: A unified approach, Comput. Optim. Appl., 59 (2014), 135-161.
doi: 10.1007/s10589-013-9616-x.
|
[9]
|
D. Han, D. Sun and L. Zhang, Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Math. Oper. Res., 43 (2018), 622-637.
doi: 10.1287/moor.2017.0875.
|
[10]
|
D. Han, W. Xu and H. Yang, An operator splitting method for variational inequalities with partially unknown mappings, Numer. Math., 111 (2008), 207-237.
doi: 10.1007/s00211-008-0181-7.
|
[11]
|
D. Han and X. Yuan, Local linear convergence of the alternating direction method of multipliers for quadratic programs, SIAM J. Numer. Anal., 51 (2013), 3446-3457.
doi: 10.1137/120886753.
|
[12]
|
B. He, F. Ma and X. Yuan, An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems, J. Math. Imaging Vision, 58 (2017), 279-293.
doi: 10.1007/s10851-017-0709-5.
|
[13]
|
B. He, Y. You and X. Yuan, On the convergence of primal-dual hybrid gradient algorithm, SIAM J. Imaging Sci., 7 (2014), 2526-2537.
doi: 10.1137/140963467.
|
[14]
|
B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, SIAM J. Imaging Sci., 5 (2012), 119-149.
doi: 10.1137/100814494.
|
[15]
|
B. He, M. Xu and X. Yuan, Solving large-scale least squares semidefinite programming by alternating direction methods, SIAM J. Matrix Anal. Appl., 32 (2011), 136-152.
doi: 10.1137/090768813.
|
[16]
|
H. He, J. Desai and K. Wang, A primal-dual prediction-correction algorithm for saddle point optimization, J. Global Optim., 66 (2016), 573-583.
doi: 10.1007/s10898-016-0437-1.
|
[17]
|
F. Jiang, X. Cai, Z. Wu and D. Han, Approximate first-order primal-dual algorithms for saddle point problems, Math. Comput., 90 (2021), 1227-1262.
doi: 10.1090/mcom/3610.
|
[18]
|
Y. Malitsky and T. Pock, A first-order primal-dual algorithm with linesearch, SIAM J. Optim., 28 (2018), 411-432.
doi: 10.1137/16M1092015.
|
[19]
|
A. Nemirovski, Prox-method with rate of convergence ${O}(1/t)$ for variational inequalities with Lipschitz continuous monotone operator and smooth convex-concave saddle point problems, SIAM J. Optim., 15 (2004), 229-251.
doi: 10.1137/S1052623403425629.
|
[20]
|
Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Applied Optimization, Kluwer Academic Publishers, Boston, MA, 2004.
doi: 10.1007/978-1-4419-8853-9.
|
[21]
|
J. Rasch and A. Chambolle, Inexact first-order primal-dual algorithms, Comput. Optim. Appl., 76 (2020), 381-430.
doi: 10.1007/s10589-020-00186-y.
|
[22]
|
W. Tian and X. Yuan, Linearized primal-dual methods for linear inverse problems with total variation regularization and finite element discretization, Inverse Problems, 32 (2016), 115011.
doi: 10.1088/0266-5611/32/11/115011.
|
[23]
|
T. Valkonen, Preconditioned proximal point methods and notions of partial subregularity, J. Convex Anal., 28 (2021), 251-278.
|
[24]
|
K. Wang and H. He, A double extrapolation primal-dual algorithm for saddle point problems, J. Sci. Comput., 85 (2020), 1-30.
doi: 10.1007/s10915-020-01330-w.
|
[25]
|
W. Yang and D. Han, Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems, SIAM J. Numer. Anal., 54 (2016), 625-640.
doi: 10.1137/140974237.
|
[26]
|
X. Zheng and K. Ng, Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization, SIAM J. Optim., 24 (2014), 154-174.
doi: 10.1137/120889502.
|
[27]
|
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, CAM Reports, UCLA, Los Angeles, CA, 2008, 08-34.
|