[1]
|
S. Asmussen, B. J. Christensen and M. Taksar, Portfolio size as function of the premium: Modelling and optimization, Stochastics, 85 (2010), 575-588.
doi: 10.1080/17442508.2013.797426.
|
[2]
|
L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance Math. Econom., 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.
|
[3]
|
L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Math. Methods Oper. Res., 68 (2008), 181-205.
doi: 10.1007/s00186-007-0195-4.
|
[4]
|
N. Bäuerle, Benchmark and mean-variance problems for insurers, Math. Methods Oper. Res., 62 (2005), 159-165.
doi: 10.1007/s00186-005-0446-1.
|
[5]
|
J. Bi and J. Cai, Optimal investment–reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance Math. Econom., 85 (2019), 1-14.
doi: 10.1016/j.insmatheco.2018.11.007.
|
[6]
|
J. Bi, Z. Liang and F. Xu, Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence, Insurance Math. Econom., 70 (2016), 245-258.
doi: 10.1016/j.insmatheco.2016.06.012.
|
[7]
|
T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5.
|
[8]
|
T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems, Preprint SSRN, 55 (2010).
|
[9]
|
T. Björk, A. Murgoci and X. Zhou, Mean–variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.
|
[10]
|
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.
|
[11]
|
L. Chen, L. Qian, Y. Shen and W. Wang, Constrained investment–reinsurance optimization with regime switching under variance premium principle, Insurance Math. Econom., 71 (2016), 253-267.
doi: 10.1016/j.insmatheco.2016.09.009.
|
[12]
|
P. Chen and S. C. P. Yam, Optimal proportional reinsurance and investment with regime-switching for mean-variance insurers, Insurance Math. Econom., 53 (2013), 871-883.
doi: 10.1016/j.insmatheco.2013.10.004.
|
[13]
|
S. Chen, Z. Li and K. Li, Optimal investment-reinsurance policy for an insurance company with VaR constraint, Insurance Math. Econom., 47 (2013), 144-153.
doi: 10.1016/j.insmatheco.2010.06.002.
|
[14]
|
I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Math. Financ. Econ., 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6.
|
[15]
|
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022.
|
[16]
|
B. Han and H. Y. Wong, Backward stochastic differential equations in finance, Available at SSRN 3182387, (2019).
|
[17]
|
C. Hipp and M. Taksar, Backward stochastic differential equations in finance, Math. Finance, 26 (2000), 185-192.
|
[18]
|
J. B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer Science & Business Media, 2012.
doi: 10.1007/978-3-642-56468-0.
|
[19]
|
B. Højgaard, Optimal dynamic premium control in non-life insurance. Maximizing dividend pay-outs, Scand. Actuar. J., 4 (2002), 225-245.
doi: 10.1080/03461230110106291.
|
[20]
|
Y. Hu, H. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.
doi: 10.1137/110853960.
|
[21]
|
D. Li, X. Rong and H. Zhao, Time-consistent reinsurance–investment strategy for an insurer and a reinsurer with mean–variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142-162.
doi: 10.1016/j.cam.2015.01.038.
|
[22]
|
Y. Li and Z. Li, Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion, Insurance Math. Econom., 53 (2013), 86-97.
doi: 10.1016/j.insmatheco.2013.03.008.
|
[23]
|
Z. Li, Y. Zeng and Y. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance Math. Econom., 51 (2012), 191-203.
doi: 10.1016/j.insmatheco.2011.09.002.
|
[24]
|
X. Liang and V. R. Young, Minimizing the probability of ruin: Optimal per-loss reinsurance, Insurance Math. Econom., 82 (2018), 181-190.
doi: 10.1016/j.insmatheco.2018.07.005.
|
[25]
|
Z. Liang and E. Bayraktar, Optimal reinsurance and investment with unobservable claim size and intensity, Insurance Math. Econom., 55 (2014), 156-166.
doi: 10.1016/j.insmatheco.2014.01.011.
|
[26]
|
H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
|
[27]
|
F. Menoncin and E. Vigna, Mean-variance target-based optimisation for defined contribution pension schemes in a stochastic framework, Insurance Math. Econom., 76 (2017), 172-184.
doi: 10.1016/j.insmatheco.2017.08.002.
|
[28]
|
D. S. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 110-128.
doi: 10.1080/10920277.2005.10596214.
|
[29]
|
Y. Shen and Y. Zeng, Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process, Insurance Math. Econom., 62 (2015), 118-137.
doi: 10.1016/j.insmatheco.2015.03.009.
|
[30]
|
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, 23 (1955), 128-143.
doi: 10.1007/978-1-349-15492-0_10.
|
[31]
|
H. Wang, R. Wang and J. Wei, Time-consistent investment-proportional reinsurance strategy with random coefficients for mean–variance insurers, Insurance Math. Econom., 85 (2019), 104-114.
doi: 10.1016/j.insmatheco.2019.01.002.
|
[32]
|
T. Wang and J. Wei, Time-consistent mean–variance asset–liability management with random coefficients, Insurance Math. Econom., 77 (2017), 84-96.
doi: 10.1016/j.insmatheco.2017.08.011.
|
[33]
|
T. Yan and H. Y. Wong, Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility, Insurance Math. Econom., 90 (2020), 105-119.
doi: 10.1016/j.insmatheco.2019.11.003.
|
[34]
|
H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.
|
[35]
|
J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations-time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.
doi: 10.1090/tran/6502.
|
[36]
|
Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001.
|
[37]
|
Y. Zeng, Z. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps, Insurance Math. Econom., 52 (2013), 498-507.
doi: 10.1016/j.insmatheco.2013.02.007.
|
[38]
|
L. Zhang, R. Wang and J. Wei, Optimal mean-variance reinsurance and investment strategy with constraints in a non-Markovian regime-switching model, Stat. Theory Relat. Fields, 4 (2020), 214-227.
doi: 10.1080/24754269.2020.1719356.
|
[39]
|
X. Zhang, H. Meng and Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling, Insurance Math. Econom., 67 (2016), 125-132.
doi: 10.1016/j.insmatheco.2016.01.001.
|
[40]
|
H. Zhao, Y. Shen and Y. Zeng, Time-consistent investment-reinsurance strategy for mean-variance insurers with a defaultable security, J. Math. Anal. Appl., 437 (2016), 1036-1057.
doi: 10.1016/j.jmaa.2016.01.035.
|