doi: 10.3934/jimo.2021145
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal per-loss reinsurance and investment to minimize the probability of drawdown

1. 

Department of Statistics and Actuarial Science, University of Waterloo, Ontario, N2L 3G1, Canada

2. 

School of Mathematical Sciences and Institute of Finance and Statistics, Nanjing Normal University, Jiangsu, 210023 China

3. 

School of Management Science and Engineering, Nanjing University of Information Science and Technology, Jiangsu, 210044, China

4. 

School of Finance, Nanjing University of Finance and Economics, Jiangsu, 210023, China

*Corresponding author: Zhibin Liang

Received  January 2021 Revised  May 2021 Early access September 2021

Fund Project: This research was supported by the National Natural Science Foundation of China (Grant No.12071224)

In this paper, we study an optimal reinsurance-investment problem in a risk model with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. We assume that the insurer can purchase per-loss reinsurance for each line of business and invest its surplus in a financial market consisting of a risk-free asset and a risky asset. Under the criterion of minimizing the probability of drawdown, the closed-form expressions for the optimal reinsurance-investment strategy and the corresponding value function are obtained. We show that the optimal reinsurance strategy is in the form of pure excess-of-loss reinsurance strategy under the expected value principle, and under the variance premium principle, the optimal reinsurance strategy is in the form of pure quota-share reinsurance. Furthermore, we extend our model to the case where the insurance company involves $ n $ $ (n\geq3) $ dependent classes of insurance business and the optimal results are derived explicitly as well.

Citation: Xia Han, Zhibin Liang, Yu Yuan, Caibin Zhang. Optimal per-loss reinsurance and investment to minimize the probability of drawdown. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021145
References:
[1]

B. AngoshtariE. Bayraktar and V. R. Young, Optimal investment to minimize the probability of drawdown, Stochastics, 88 (2016), 946-958.  doi: 10.1080/17442508.20H.155590.  Google Scholar

[2]

B. AngoshtariE. Bayraktar and V. R. Young, Minimizing the probability of lifetime drawdown under constant consumption, Insurance Math. Econom., 69 (2016), 210-223.  doi: 10.1016/j.insmatheco.2016.05.007.  Google Scholar

[3]

L. BaiJ. Cai and M. Zhou, Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting, Insurance Math. Econom., 53 (2013), 664-670.  doi: 10.1016/j.insmatheco.2013.09.008.  Google Scholar

[4]

M. Brachetta and C. Ceci, Optimal proportional reinsurance and investment for stochastic factor models, Insurance Math. Econo., 87 (2019), 15-33.  doi: 10.1016/j.insmatheco.2019.03.006.  Google Scholar

[5]

X. ChenD. LandriaultB. Li and D. Li, On minimizing drawdown risks of lifetime investments, Insurance Math. Econom., 65 (2015), 46-54.  doi: 10.1016/j.insmatheco.2015.08.007.  Google Scholar

[6]

A. GuX. GuoZ. Li and Y. Zeng, Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model, Insurance Math. Econom., 51 (2012), 674-684.  doi: 10.1016/j.insmatheco.2012.09.003.  Google Scholar

[7]

S. J. Grossman and Z. Zhou, Optimal investment strategies for controlling drawdowns, Mathematical Finance, 3 (1993), 241-276.   Google Scholar

[8]

X. HanZ. Liang and V. R. Young, Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scand. Actuar. J., 2020 (2020), 873-903.  doi: 10.1080/03461238.2020.1788136.  Google Scholar

[9]

X. HanZ. Liang and K. C. Yuen, Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure, Scand. Actuar. J., 2018 (2018), 863-889.  doi: 10.1080/03461238.2018.1469098.  Google Scholar

[10]

X. HanZ. Liang and C. Zhang, Optimal proportional reinsurance with common shock dependence to minimize the probability of drawdown, Annals of Actuarial Science, 13 (2019), 268-294.   Google Scholar

[11]

C. Hipp and M. Taksar, Optimal non-proportional reinsurance control, Insurance Math. Econom., 47 (2010), 246-254.  doi: 10.1016/j.insmatheco.2010.04.001.  Google Scholar

[12]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios, Insurance Math. Econom., 35 (2004), 21-51.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[13]

C. Jaksa and K. Ioannis, On portfolio optimization under drawdown constraints, IMA Lecture Notes in Mathematical Applications, 65 (1995), 77-88.   Google Scholar

[14]

B. Karl, An attempt to determine the optimum amount of stop loss reinsurance, Transaction of the $16$th International Congress of Actuaries, (1960), 597–610. Google Scholar

[15]

D. LiX. Rong and H. Zhao, Equilibrium excess-of-loss reinsurance-investment strategy for a mean-variance insurer under stochastic volatility model, Comm. Statist. Theory Methods, 46 (2017), 9459-9475.  doi: 10.1080/03610926.20I.112071.  Google Scholar

[16]

D. LiY. Zeng and H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuar. J., 2018 (2018), 145-171.  doi: 10.1080/03461238.2017.1309679.  Google Scholar

[17]

X. Liang and V. R. Young, Minimizing the probability of ruin: Optimal per-loss reinsurance, Insurance Math. Econom., 82 (2018), 181-190.  doi: 10.1016/j.insmatheco.2018.07.005.  Google Scholar

[18]

X. Liang and V. R. Young, Minimizing the discounted probability of exponential Parisian ruin via reinsurance, SIAM J. Control Optim., 58 (2020), 937-964.  doi: 10.1137/19M1282714.  Google Scholar

[19]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Math. Methods Oper. Res., 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[20]

Z. Liang and J. Guo, newblock Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility, J. Appl. Math. Comput., 36 (2011), 11–25., doi: 10.1007/s12190-010-0385-8.  Google Scholar

[21]

S. Luo and M. Taksar, On absolute ruin minimization under a diffusion approximation model, Insurance Math. Econom., 48 (2011), 123-133.   Google Scholar

[22]

V. C. Pestien and W. D. Sudderth, Continuous-time red and black: How to control a diffusion to a goal, Math. Oper. Res., 8 (1985), 599-611.   Google Scholar

[23]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 109-128.   Google Scholar

[24]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance, Ann. Appl. Probab., 12 (2002), 890-907.   Google Scholar

[25]

Y. Yuan, Z. Liang and X. Han, Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs, Journal of Industrial and Management Optimization, (2021). doi: 10.3934/jimo.2021003.  Google Scholar

[26]

X. ZhangH. Meng and Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insurance Math. Econom., 67 (2016), 125-132.   Google Scholar

[27]

X. ZhangM. Zhou and J. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Appl. Stoch. Models Bus. Ind., 23 (2007), 63-71.   Google Scholar

show all references

References:
[1]

B. AngoshtariE. Bayraktar and V. R. Young, Optimal investment to minimize the probability of drawdown, Stochastics, 88 (2016), 946-958.  doi: 10.1080/17442508.20H.155590.  Google Scholar

[2]

B. AngoshtariE. Bayraktar and V. R. Young, Minimizing the probability of lifetime drawdown under constant consumption, Insurance Math. Econom., 69 (2016), 210-223.  doi: 10.1016/j.insmatheco.2016.05.007.  Google Scholar

[3]

L. BaiJ. Cai and M. Zhou, Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting, Insurance Math. Econom., 53 (2013), 664-670.  doi: 10.1016/j.insmatheco.2013.09.008.  Google Scholar

[4]

M. Brachetta and C. Ceci, Optimal proportional reinsurance and investment for stochastic factor models, Insurance Math. Econo., 87 (2019), 15-33.  doi: 10.1016/j.insmatheco.2019.03.006.  Google Scholar

[5]

X. ChenD. LandriaultB. Li and D. Li, On minimizing drawdown risks of lifetime investments, Insurance Math. Econom., 65 (2015), 46-54.  doi: 10.1016/j.insmatheco.2015.08.007.  Google Scholar

[6]

A. GuX. GuoZ. Li and Y. Zeng, Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model, Insurance Math. Econom., 51 (2012), 674-684.  doi: 10.1016/j.insmatheco.2012.09.003.  Google Scholar

[7]

S. J. Grossman and Z. Zhou, Optimal investment strategies for controlling drawdowns, Mathematical Finance, 3 (1993), 241-276.   Google Scholar

[8]

X. HanZ. Liang and V. R. Young, Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scand. Actuar. J., 2020 (2020), 873-903.  doi: 10.1080/03461238.2020.1788136.  Google Scholar

[9]

X. HanZ. Liang and K. C. Yuen, Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure, Scand. Actuar. J., 2018 (2018), 863-889.  doi: 10.1080/03461238.2018.1469098.  Google Scholar

[10]

X. HanZ. Liang and C. Zhang, Optimal proportional reinsurance with common shock dependence to minimize the probability of drawdown, Annals of Actuarial Science, 13 (2019), 268-294.   Google Scholar

[11]

C. Hipp and M. Taksar, Optimal non-proportional reinsurance control, Insurance Math. Econom., 47 (2010), 246-254.  doi: 10.1016/j.insmatheco.2010.04.001.  Google Scholar

[12]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios, Insurance Math. Econom., 35 (2004), 21-51.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[13]

C. Jaksa and K. Ioannis, On portfolio optimization under drawdown constraints, IMA Lecture Notes in Mathematical Applications, 65 (1995), 77-88.   Google Scholar

[14]

B. Karl, An attempt to determine the optimum amount of stop loss reinsurance, Transaction of the $16$th International Congress of Actuaries, (1960), 597–610. Google Scholar

[15]

D. LiX. Rong and H. Zhao, Equilibrium excess-of-loss reinsurance-investment strategy for a mean-variance insurer under stochastic volatility model, Comm. Statist. Theory Methods, 46 (2017), 9459-9475.  doi: 10.1080/03610926.20I.112071.  Google Scholar

[16]

D. LiY. Zeng and H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuar. J., 2018 (2018), 145-171.  doi: 10.1080/03461238.2017.1309679.  Google Scholar

[17]

X. Liang and V. R. Young, Minimizing the probability of ruin: Optimal per-loss reinsurance, Insurance Math. Econom., 82 (2018), 181-190.  doi: 10.1016/j.insmatheco.2018.07.005.  Google Scholar

[18]

X. Liang and V. R. Young, Minimizing the discounted probability of exponential Parisian ruin via reinsurance, SIAM J. Control Optim., 58 (2020), 937-964.  doi: 10.1137/19M1282714.  Google Scholar

[19]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Math. Methods Oper. Res., 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[20]

Z. Liang and J. Guo, newblock Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility, J. Appl. Math. Comput., 36 (2011), 11–25., doi: 10.1007/s12190-010-0385-8.  Google Scholar

[21]

S. Luo and M. Taksar, On absolute ruin minimization under a diffusion approximation model, Insurance Math. Econom., 48 (2011), 123-133.   Google Scholar

[22]

V. C. Pestien and W. D. Sudderth, Continuous-time red and black: How to control a diffusion to a goal, Math. Oper. Res., 8 (1985), 599-611.   Google Scholar

[23]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 109-128.   Google Scholar

[24]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance, Ann. Appl. Probab., 12 (2002), 890-907.   Google Scholar

[25]

Y. Yuan, Z. Liang and X. Han, Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs, Journal of Industrial and Management Optimization, (2021). doi: 10.3934/jimo.2021003.  Google Scholar

[26]

X. ZhangH. Meng and Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insurance Math. Econom., 67 (2016), 125-132.   Google Scholar

[27]

X. ZhangM. Zhou and J. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Appl. Stoch. Models Bus. Ind., 23 (2007), 63-71.   Google Scholar

Figure 1.  The function $ G(7,d) $
Figure 2.  The effect of $ u $ on optimal strategy
Figure 3.  The effect of η1 on optimal strategy (η2 = 0.25)
Figure 4.  The effect of $ \eta_2 $ on optimal strategy ($ \eta_1 = 0.4 $)
Figure 5.  The effect of $ \lambda $ on optimal strategy
Figure 6.  The effect of $ \lambda $ on correlation coefficient
Figure 7.  Comparison between the optimal strategies
Figure 8.  Comparison between the value functions
[1]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[2]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080

[3]

Hiroaki Hata, Li-Hsien Sun. Optimal investment and reinsurance of insurers with lognormal stochastic factor model. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021033

[4]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[5]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[6]

Yan Zhang, Peibiao Zhao. Optimal reinsurance-investment problem with dependent risks based on Legendre transform. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1457-1479. doi: 10.3934/jimo.2019011

[7]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[8]

Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009

[9]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control & Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003

[10]

Xiaoyu Xing, Caixia Geng. Optimal investment-reinsurance strategy in the correlated insurance and financial markets. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021120

[11]

Meng Wu, Jiefeng Yang. The optimal exit of staged investment when consider the posterior probability. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1105-1123. doi: 10.3934/jimo.2016064

[12]

Vladimir Turetsky, Valery Y. Glizer. Optimal decision in a Statistical Process Control with cubic loss. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021096

[13]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial & Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[14]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[15]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[16]

Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020143

[17]

Yan Zeng, Zhongfei Li. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. Journal of Industrial & Management Optimization, 2012, 8 (3) : 673-690. doi: 10.3934/jimo.2012.8.673

[18]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[19]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[20]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]