doi: 10.3934/jimo.2021146
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A note on the solvability of a tensor equation

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

Received  January 2021 Revised  May 2021 Early access September 2021

Fund Project: This work is partially supported by National Science Foundation of China (Grant No. 11771328), Young Elite Scientists Sponsorship Program by Tianjin, and the Natural Science Foundation of Zhejiang Province, China (Grant No. LD19A010002)

In this note, we generalize a solvability result for a tensor equation with a nonsingular leading tensor to the case with possibly a singular leading tensor.

Citation: Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021146
References:
[1]

S. Friedland, Inverse eigenvalue problem, Linear Algebra Appl., 17 (1977), 15-51.  doi: 10.1016/0024-3795(77)90039-8.  Google Scholar

[2]

R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.  Google Scholar

[3]

S. HuZ.-H. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50 (2013), 508-531.  doi: 10.1016/j.jsc.2012.10.001.  Google Scholar

[4]

Z.-H. Huang and L. Qi, Tensor complementarity problems–Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.  doi: 10.1007/s10957-019-01566-z.  Google Scholar

[5]

I. R. Shafarevich, Basic Algebraic Geometry, Translated from the Russian by K. A. Hirsch. Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. Springer Study Edition. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[6]

X. WangM. Che and Y. Wei, Existence and uniqueness of positive solution for $H^+$-tensor equations, Appl. Math. Lett., 98 (2019), 191-198.  doi: 10.1016/j.aml.2019.05.046.  Google Scholar

[7]

X. Wang, M. Che and Y. Wei, Neural network approach for solving nonsingular multi-linear tensor systems, J. Comput. Appl. Math., 368 (2020), 112569. doi: 10.1016/j.cam.2019.112569.  Google Scholar

show all references

References:
[1]

S. Friedland, Inverse eigenvalue problem, Linear Algebra Appl., 17 (1977), 15-51.  doi: 10.1016/0024-3795(77)90039-8.  Google Scholar

[2]

R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.  Google Scholar

[3]

S. HuZ.-H. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50 (2013), 508-531.  doi: 10.1016/j.jsc.2012.10.001.  Google Scholar

[4]

Z.-H. Huang and L. Qi, Tensor complementarity problems–Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.  doi: 10.1007/s10957-019-01566-z.  Google Scholar

[5]

I. R. Shafarevich, Basic Algebraic Geometry, Translated from the Russian by K. A. Hirsch. Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. Springer Study Edition. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[6]

X. WangM. Che and Y. Wei, Existence and uniqueness of positive solution for $H^+$-tensor equations, Appl. Math. Lett., 98 (2019), 191-198.  doi: 10.1016/j.aml.2019.05.046.  Google Scholar

[7]

X. Wang, M. Che and Y. Wei, Neural network approach for solving nonsingular multi-linear tensor systems, J. Comput. Appl. Math., 368 (2020), 112569. doi: 10.1016/j.cam.2019.112569.  Google Scholar

[1]

Jin Wang, Jun-E Feng, Hua-Lin Huang. Solvability of the matrix equation $ AX^{2} = B $ with semi-tensor product. Electronic Research Archive, 2021, 29 (3) : 2249-2267. doi: 10.3934/era.2020114

[2]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[3]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[4]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[5]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[6]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[7]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[8]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[9]

Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021010

[10]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[11]

Xia Li, Yong Wang, Zheng-Hai Huang. Continuity, differentiability and semismoothness of generalized tensor functions. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3525-3550. doi: 10.3934/jimo.2020131

[12]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[13]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[14]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[15]

Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems & Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885

[16]

Qun Liu, Lihua Fu, Meng Zhang, Wanjuan Zhang. Two-dimensional seismic data reconstruction using patch tensor completion. Inverse Problems & Imaging, 2020, 14 (6) : 985-1000. doi: 10.3934/ipi.2020052

[17]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[18]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[19]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[20]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (64)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]