• Previous Article
    Solution method for discrete double obstacle problems based on a power penalty approach
  • JIMO Home
  • This Issue
  • Next Article
    Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs
doi: 10.3934/jimo.2021149
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Human resources optimization with MARS and ANN: Innovation geolocation model for generation Z

1. 

Poznan University of Technology, Faculty of Engineering Management, Poznan, Poland

2. 

Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland

* Corresponding author: Magdalena Graczyk-Kucharska E-mail address: magdalena.graczyk-kucharska@put.poznan.pl.

*ORCID IDs: Graczyk-Kucharska [0000-0002-4241-8216]; Robert Olszewski [0000-0003-1697- 9367]; Marek Golinski [0000-0002-0170-2835]; Ma lgorzata Spycha la [0000-0003-1471-5536]; Maciej Szafranski [0000-0002-4281-9845]; Gerhard Wilhelm Weber [0000-0003-0849-7771].

Received  March 2021 Revised  June 2021 Early access September 2021

Human resources (HR) have a key impact on the creation and implementation of modern products, solutions and concepts. Relatively new and rarely undertaken research challenge in enterprise is optimization of HR in the context of their location and requirements for working conditions. A great challenge here is the transparency and reliability of the collected data. In the article, we present a modern approach to knowledge extraction based on Artificial Intelligence (AI) and Multivariate Adaptive Regression Splines optimizing the availability of HR with a high innovation rate, taking into account their availability time and location. This study was conducted on a group of 5095 young people from the Z generation. A total of 11 variables were analyzed in the context of innovation and presented in this article. The effect of research using machine learning methods is the analysis of the characteristics of generation Z representatives, whose desire is to work in innovative companies. Research results indicate that some regions offer candidates with a higher level and commitment to innovation, and thus make HR more available for the development of innovative products. Chosen models designed by using AI and Operational Research Analytics were presented in the graphic visualization, which is a novelty in the presentation of similar issues in relation to HR.

Citation: Magdalena Graczyk-Kucharska, Robert Olszewski, Marek Golinski, Malgorzata Spychala, Maciej Szafranski, Gerhard Wilhelm Weber, Marek Miadowicz. Human resources optimization with MARS and ANN: Innovation geolocation model for generation Z. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021149
References:
[1]

Association for the Advancement of Artificial Intelligence, available at: http://www.aaai.org/. Google Scholar

[2]

COM/2016/0361 Annexes to the Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions Delivering the Single market Agenda for Jobs, Growth and Investment, available at: https://secure.ipex.eu. Google Scholar

[3]

A. AbbasA. AvdicP. XiaobaoM. M. Hasan and Ming W, University-government collaboration for the generation and commercialization of new knowledge for use in industry, Journal of Innovation and Knowledge, 4 (2018), 23-31.   Google Scholar

[4]

T. Bondarouk and C. Brewster, Conceptualising the future of HRM and technology research, The International Journal of Human Resource Management, 27 (2016), 2652-2671.  doi: 10.1080/09585192.2016.1232296.  Google Scholar

[5]

M. J. BeynonP. Jones and D. Pickernell, The role of entrepreneurship, innovation, and urbanity-diversity on growth, unemployment, and income: US state-level evidence and an fsQCA elucidation, Journal of Business Research, 101 (2019), 675-687.   Google Scholar

[6]

S. Breschi, F. Lissoni and C. N. Temgoua, Migration and innovation: A survey of recent studies, In Handbook on the Geographies of Innovation, (eds. R. Shearmur, C. Carrincazeaux, D. Doloreux), Edward Elgar Publishing, Cheltenham, UK, Northampton, USA, (2016), 382–398. Google Scholar

[7]

T. S. Calvard and D. Jeske, Developing human resource data risk management in the age of big data, International Journal of Information Management, 43 (2018), 159-164.   Google Scholar

[8]

J. CanedoG. B. GraenM. Grace and R. D. Johnson, Navigating the new workplace: Technology, millennials, and accelerating HR innovation, Transactions on Human-Computer Interaction, 9 (2017), 243-260.   Google Scholar

[9]

C. F. Chien and L. F. Chen, Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry, Expert Systems with Applications, 34 (2008), 280-290.   Google Scholar

[10]

P. CelikM. StormeA. Davila and N. Myszkowski, Work-related curiosity positively predicts worker innovation, Journal of Management Development, 35 (2016), 1184-1194.   Google Scholar

[11]

D. F. CampbellE. G. Carayannis and S. S. Rehman, Quadruple helix structures of quality of democracy in innovation systems: The USA, OECD countries, and EU member countries in global comparison, Journal of the Knowledge Economy, 6 (2015), 467-493.  doi: 10.1007/s13132-015-0246-7.  Google Scholar

[12]

A. ÇevikG. W. WeberB. M. Eyüboğlu and K. K. Oğuz, Voxel-MARS: A method for early detection of Alzheimer's disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31-57.  doi: 10.1007/s10479-017-2405-7.  Google Scholar

[13]

R. S. Dubey and V. Tiwari, Operationalisation of soft skill attributes and determining the existing gap in novice ICT professionals, International Journal of Information Management, 50 (2020), 375-386.   Google Scholar

[14]

S. DoltsinisP. Ferreira and N. Lohse, A symbiotic human-machine learning approach for production ramp-up, IEEE Transactions on Human-Machine Systems, 48 (2017), 229-240.   Google Scholar

[15]

G. Feola and A. Butt, The diffusion of grassroots innovations for sustainability in italy and g reat b ritain: An exploratory spatial data analysis, The Geographical Journal, 183 (2017), 16-33.   Google Scholar

[16]

C. Fernandes, J. J. Ferreira, P. M. Veiga and M. Peris-Ortiz, Knowledge, innovation and sustainability: Past literature and future trends, in Knowledge, Innovation and Sustainable Development in Organizations, (2019), 11–22. Google Scholar

[17]

J. H. Friedman, Multivariate adaptive regression splines, Ann. Statist., (1991), 1–141. doi: 10.1214/aos/1176347963.  Google Scholar

[18]

I. GoodfellowY. Bengio and A. Courville, Machine learning basics, Deep Learning, 1 (2016), 98-164.   Google Scholar

[19]

R. GarudP. Tuertscher and A. H. Van de Ven, Perspectives on innovation processes, Academy of Management Annals, 7 (2013), 775-819.   Google Scholar

[20]

B. Hmoud and V. Laszlo, Will artificial intelligence take over human resources recruitment and selection?, Network Intelligence Studies, 13 (2019), 21-30.   Google Scholar

[21]

J. H. HardyE. A. Day and W. Arthur, Exploration-exploitation tradeoffs and information-knowledge gaps in self-regulated learning: Implications for learner-controlled training and development, Human Resource Management Review, 29 (2019), 196-217.  doi: 10.1016/j.hrmr.2018.07.004.  Google Scholar

[22]

L. C. HuangP. WuR. J. Kuo and H. C. Huang, A neural network modelling on human resource talent selection, International Journal of Human Resources Development and Management, 1 (2001), 206-219.   Google Scholar

[23]

Q. Jia, Y. Guo, R. Li, Y. Li and Y. Chen, A conceptual artificial intelligence application framework in human resource management, in Proceedings of The 18th of The International Conference on Electronic Business, (ICEB), Guilin, China, (2018), 106–114. Google Scholar

[24]

S. KuterG. W. WeberZ. Akyürek and A. Özmen, Inversion of top of atmospheric reflectance values by conic multivariate adaptive regression splines, Inverse Problems in Science and Engineering, 23 (2015), 651-669.  doi: 10.1080/17415977.2014.933828.  Google Scholar

[25]

A. KiantoJ. Sáenz and N. Aramburu, Knowledge-based human resource management practices, intellectual capital and innovation, Journal of Business Research, 81 (2017), 11-20.  doi: 10.1016/j.jbusres.2017.07.018.  Google Scholar

[26]

R. K. R. Kummitha, Why distance matters: The relatedness between technology development and its appropriation in smart cities, Technological Forecasting and Social Change, 9 (2020), 255-287.   Google Scholar

[27]

E. KropatR. A. Tikidji-Hamburyan and G.-W. Weber, Operations research in neuroscience, Ann. Oper. Res., 258 (2017), 1-4.  doi: 10.1007/s10479-017-2633-x.  Google Scholar

[28]

E. KropatM. Türkay and G.-W. Weber, Fuzzy analytics and stochastic methods in neurosciences, IEEE Transactions on Fuzzy Systems, 28 (2020), 1-121.   Google Scholar

[29]

C. Kanchibhotla, P. Venkatesh, D. Somayajulu and P. Radha krishna, An efficient cloud-based framework for digital media knowledge extraction, in IEEE International Conference on Big Data, (2019), 1841–1850. doi: 10.1109/BigData47090.2019.9005480.  Google Scholar

[30]

X. Li, New thinking of human resource management in the age of artificial intelligence, In: 2nd International Proceedings on International Conference on Systems, Computing, and Applications, Francis Academic Press, UK., (2018), 133–136. Google Scholar

[31]

M. R. Mohamad and N. M. Zin, Knowledge management and the competitiveness of small construction firms, Competitiveness Review: An International Business Journal, 29 (2019), 534-550.   Google Scholar

[32]

A. K. M. MasumL. S. BehM. A. K. Azad and K. Hoque, Intelligent human resource information system (i-HRIS): A holistic decision support framework for HR excellence, International Arab Journal of Information Technology, 15 (2018), 121-130.   Google Scholar

[33]

F. Malerba and M. McKelvey, Knowledge-intensive innovative entrepreneurship integrating schumpeter, evolutionary economics, and innovation systems, Small Business Economics, 54 (2020), 503-522.  doi: 10.1007/s11187-018-0060-2.  Google Scholar

[34]

P. Matsa and K. Gullamajji, To study impact of artificial intelligence on human resource management, International Research Journal of Engineering and Technology, (IRJET), 6 (2019), 1229–1238. Google Scholar

[35]

A. K. M. MasumL. S. BehM. A. K. Azad and K. Hoque, Intelligent human resource information system (i-HRIS): A holistic decision support framework for HR excellence, Int. Arab J. Inf. Technol., 15 (2018), 121-130.   Google Scholar

[36]

A. MaithiliR. V. KumariS. Rajamanickam and P. J. Paul, Neural network towards business forecasting, IOSR Journal of Engineering, 2 (2012), 831-836.  doi: 10.9790/3021-0204831836.  Google Scholar

[37]

R. Molina, N. P. De la Blanca and C. C. Taylor, Modern statistical techniques, Machine Learning, Neural and Statistical Classification, (1994), 29–49. Google Scholar

[38]

P. A. MerollaJ. V. ArthurR. Alvarez-IcazaA. S. CassidyJ. SawadaF. AkopyanB. L. JacksonN. ImamC. GuoY. NakamuraB. BrezzoI. VoS. K. EsserR. AppuswamyB. TabaA. AmirM. D. FlicknerW. P. RiskR. Manohar and D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, 345 (2014), 668-673.  doi: 10.1126/science.1254642.  Google Scholar

[39]

S. S. NicolaescuA. FloreaC. V. KiforU. FioreN. CocanI. Receu and P. Zanetti, Human capital evaluation in knowledge-based organizations based on big data analytics, Future Generation Computer Systems, 111 (2020), 654-667.   Google Scholar

[40]

A. ÖzmenG. W. WeberZ. Çavu\c{s}oğlu and Ö. Defterli, The new robust conic GPLM method with an application to finance: Prediction of credit default, J. Global Optim., 56 (2013), 233-249.  doi: 10.1007/s10898-012-9902-7.  Google Scholar

[41]

A. Özmen and G. W. Weber, Robust conic generalized partial linear models using RCMARS method-A robustification of CGPLM, in Proceedings of the Sixth Global Conference on Power Control and Optimization, (eds. N. N. Barsoum, D. Fairman and P. Vasant), American Institute of Physics, USA, 1499 (2012), 337–343 Google Scholar

[42]

A. Özmen and G. W. Weber, RMARS: Robustification of multivariate adaptive regression spline under polyhedral uncertainty, J. Comput. Appl. Math., 259 (2014), 914-924.  doi: 10.1016/j.cam.2013.09.055.  Google Scholar

[43]

A. ÖzmenG. W. Weberİ. Batmaz and E. Kropat, RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4780-4787.  doi: 10.1016/j.cnsns.2011.04.001.  Google Scholar

[44]

O. ParkJ. Bae and W. Hong, High-commitment HRM system, HR capability, and ambidextrous technological innovation, The International Journal of Human Resource Management, 30 (2019), 1526-1548.  doi: 10.1080/09585192.2017.1296880.  Google Scholar

[45]

K. Pettersson and M. Lindberg, Paradoxical spaces of feminist resistance: Mapping the margin to the masculinist innovation discourse, International Journal of Gender and Entrepreneurship, 5 (2013), 323-41.   Google Scholar

[46]

S. Poutanen and A. Kovalainen, Gendering innovation process in an industrial plant. Revisiting tokenism, gender and innovation, International Journal of Gender and Entrepreneurship, 5 (2013), 257-74.   Google Scholar

[47]

L. Pecis, Doing and undoing gender in innovation: Femininities and masculinities in innovation processes, Human Relations, 69 (2016), 2117-2140.   Google Scholar

[48]

J. PaschenJ. Kietzmann and T. C. Kietzmann, Artificial intelligence (AI) and its implications for market knowledge in B2B marketing, Journal of Business & Industrial Marketing, 34 (2019), 1410-1419.  doi: 10.1108/JBIM-10-2018-0295.  Google Scholar

[49]

T. PakizeF. Yerlikaya-Özkurt and G.-W. Weber, An approach to the mean shift outlier model by Tikhonov regularization and conic programming, Intelligent Data Analysis, 18 (2014), 79-94.  doi: 10.3233/IDA-130629.  Google Scholar

[50]

S. Pandely and P. Khaskel, Application of AI in human resource management and gen Y's reaction, International Journal of Recent Technology and Engineering, 8 (2019), 2277-3878.   Google Scholar

[51]

G. Stoet and D. C. Geary, The gender-equality paradox in science, technology, engineering, and mathematics education, Psychological Science, 29 (2018), 581-593.   Google Scholar

[52]

M. Sriram and L. Gandhi, Exploring the dynamica virtus of Machine Learning (ML) in human resource management - A critical analysis of IT industry, International Journal of Computer Sciences and Engineering, 5 (2017), 173-180.   Google Scholar

[53]

T. M. Scholz, Big Data in Organizations and the Role of Human Resource Management: A Complex Systems Theory-Based Conceptualization, Personalmanagement und Organisation, Peter Lang GmbH, New York, 2017. Google Scholar

[54]

R. V. Sunita, An optimizing preprocessing algorithm for enhanced web content, in soft computing: Theories and applications, Advances in Intelligent Systems and Computing, (eds. M. Pant, T. Sharma, O. Verma, R. Singla and A. Sikander), Springer, 1053 (2020), 63–71. Google Scholar

[55]

N. SamaniM. Gohari-Moghadam and A. A. Safavi, A simple neural network model for the determination of aquifer parameters, Journal of Hydrology, 340 (2007), 1-11.  doi: 10.1016/j.jhydrol.2007.03.017.  Google Scholar

[56]

V. Sharma, Artificial neural network applicability in business forecasting, International Journal of Emerging Research in Management & Technology, 1 (2012), 62-65.   Google Scholar

[57]

E. Savku and G. W. Weber, A stochastic maximum principle for a markov regime-switching jump-diffusion model with delay and an application to finance, J. Optim. Theory Appl., 179 (2018), 696-721.  doi: 10.1007/s10957-017-1159-3.  Google Scholar

[58]

P. TambeP. Cappelli and V. Yakubovich, Artificial intelligence in human resources management: Challenges and a path forward, California Management Review, 61 (2019), 15-42.  doi: 10.1177/0008125619867910.  Google Scholar

[59]

C. Y. Tung, An assessment of China's Taiwan policy under the third generation leadership, Asian Survey, 45 (2005), 343-361.   Google Scholar

[60]

V. TandonG. Ertug and G. Carnabuci, How do prior ties affect learning by hiring?, Journal of Management, 46 (2018), 287-320.   Google Scholar

[61]

R. A. Tikidji-HamburyanE. Kropat and G.-W. Weber, Preface operations research in neuroscience II, Ann. Oper. Res., 289 (2020), 1-4.  doi: 10.1007/s10479-020-03574-z.  Google Scholar

[62]

P. Taylan, F. Yerlikaya-Özkurt, B. Bilgiç Uçak and G.-W. Weber, A new outlier detection method based on convex optimization: Application to diagnosis of Parkinson's disease, Journal of Applied Statistics, (2020), 1–20. doi: 10.1080/02664763.2020.1864815.  Google Scholar

[63]

P. Vasant, I. Zelinka and G.-W. Weber, Intelligent computing and optimization, proceedings of the 3rd international conference on intelligent computing and optimization 2020, Advances in Intelligent Systems and Computing, Lecture Notes in Networks and Systems, Springer, 1324 (2020), 1–1327. doi: 10.1007/978-3-030-68154-8.  Google Scholar

[64]

G. W. Weberİ. BatmazG. KöksalP. Taylan and F. Yerlikaya-Özkurt, CMARS: A new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization, Inverse Probl. Sci. Eng., 20 (2012), 371-400.  doi: 10.1080/17415977.2011.624770.  Google Scholar

[65]

C. ZouW. Zhao and K. Siau, COVID-19 calls for remote reskilling and retraining, Cutter Business Technology Journal, 33 (2020), 21-25.   Google Scholar

[66]

J. ZhangH. JiangR. Wu and J. Li, Reconciling the dilemma of knowledge sharing: A network pluralism framework of firms' R & D alliance network and innovation performance, Journal of Management, 45 (2018), 2635-2665.  doi: 10.1177/0149206318761575.  Google Scholar

show all references

References:
[1]

Association for the Advancement of Artificial Intelligence, available at: http://www.aaai.org/. Google Scholar

[2]

COM/2016/0361 Annexes to the Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions Delivering the Single market Agenda for Jobs, Growth and Investment, available at: https://secure.ipex.eu. Google Scholar

[3]

A. AbbasA. AvdicP. XiaobaoM. M. Hasan and Ming W, University-government collaboration for the generation and commercialization of new knowledge for use in industry, Journal of Innovation and Knowledge, 4 (2018), 23-31.   Google Scholar

[4]

T. Bondarouk and C. Brewster, Conceptualising the future of HRM and technology research, The International Journal of Human Resource Management, 27 (2016), 2652-2671.  doi: 10.1080/09585192.2016.1232296.  Google Scholar

[5]

M. J. BeynonP. Jones and D. Pickernell, The role of entrepreneurship, innovation, and urbanity-diversity on growth, unemployment, and income: US state-level evidence and an fsQCA elucidation, Journal of Business Research, 101 (2019), 675-687.   Google Scholar

[6]

S. Breschi, F. Lissoni and C. N. Temgoua, Migration and innovation: A survey of recent studies, In Handbook on the Geographies of Innovation, (eds. R. Shearmur, C. Carrincazeaux, D. Doloreux), Edward Elgar Publishing, Cheltenham, UK, Northampton, USA, (2016), 382–398. Google Scholar

[7]

T. S. Calvard and D. Jeske, Developing human resource data risk management in the age of big data, International Journal of Information Management, 43 (2018), 159-164.   Google Scholar

[8]

J. CanedoG. B. GraenM. Grace and R. D. Johnson, Navigating the new workplace: Technology, millennials, and accelerating HR innovation, Transactions on Human-Computer Interaction, 9 (2017), 243-260.   Google Scholar

[9]

C. F. Chien and L. F. Chen, Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry, Expert Systems with Applications, 34 (2008), 280-290.   Google Scholar

[10]

P. CelikM. StormeA. Davila and N. Myszkowski, Work-related curiosity positively predicts worker innovation, Journal of Management Development, 35 (2016), 1184-1194.   Google Scholar

[11]

D. F. CampbellE. G. Carayannis and S. S. Rehman, Quadruple helix structures of quality of democracy in innovation systems: The USA, OECD countries, and EU member countries in global comparison, Journal of the Knowledge Economy, 6 (2015), 467-493.  doi: 10.1007/s13132-015-0246-7.  Google Scholar

[12]

A. ÇevikG. W. WeberB. M. Eyüboğlu and K. K. Oğuz, Voxel-MARS: A method for early detection of Alzheimer's disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31-57.  doi: 10.1007/s10479-017-2405-7.  Google Scholar

[13]

R. S. Dubey and V. Tiwari, Operationalisation of soft skill attributes and determining the existing gap in novice ICT professionals, International Journal of Information Management, 50 (2020), 375-386.   Google Scholar

[14]

S. DoltsinisP. Ferreira and N. Lohse, A symbiotic human-machine learning approach for production ramp-up, IEEE Transactions on Human-Machine Systems, 48 (2017), 229-240.   Google Scholar

[15]

G. Feola and A. Butt, The diffusion of grassroots innovations for sustainability in italy and g reat b ritain: An exploratory spatial data analysis, The Geographical Journal, 183 (2017), 16-33.   Google Scholar

[16]

C. Fernandes, J. J. Ferreira, P. M. Veiga and M. Peris-Ortiz, Knowledge, innovation and sustainability: Past literature and future trends, in Knowledge, Innovation and Sustainable Development in Organizations, (2019), 11–22. Google Scholar

[17]

J. H. Friedman, Multivariate adaptive regression splines, Ann. Statist., (1991), 1–141. doi: 10.1214/aos/1176347963.  Google Scholar

[18]

I. GoodfellowY. Bengio and A. Courville, Machine learning basics, Deep Learning, 1 (2016), 98-164.   Google Scholar

[19]

R. GarudP. Tuertscher and A. H. Van de Ven, Perspectives on innovation processes, Academy of Management Annals, 7 (2013), 775-819.   Google Scholar

[20]

B. Hmoud and V. Laszlo, Will artificial intelligence take over human resources recruitment and selection?, Network Intelligence Studies, 13 (2019), 21-30.   Google Scholar

[21]

J. H. HardyE. A. Day and W. Arthur, Exploration-exploitation tradeoffs and information-knowledge gaps in self-regulated learning: Implications for learner-controlled training and development, Human Resource Management Review, 29 (2019), 196-217.  doi: 10.1016/j.hrmr.2018.07.004.  Google Scholar

[22]

L. C. HuangP. WuR. J. Kuo and H. C. Huang, A neural network modelling on human resource talent selection, International Journal of Human Resources Development and Management, 1 (2001), 206-219.   Google Scholar

[23]

Q. Jia, Y. Guo, R. Li, Y. Li and Y. Chen, A conceptual artificial intelligence application framework in human resource management, in Proceedings of The 18th of The International Conference on Electronic Business, (ICEB), Guilin, China, (2018), 106–114. Google Scholar

[24]

S. KuterG. W. WeberZ. Akyürek and A. Özmen, Inversion of top of atmospheric reflectance values by conic multivariate adaptive regression splines, Inverse Problems in Science and Engineering, 23 (2015), 651-669.  doi: 10.1080/17415977.2014.933828.  Google Scholar

[25]

A. KiantoJ. Sáenz and N. Aramburu, Knowledge-based human resource management practices, intellectual capital and innovation, Journal of Business Research, 81 (2017), 11-20.  doi: 10.1016/j.jbusres.2017.07.018.  Google Scholar

[26]

R. K. R. Kummitha, Why distance matters: The relatedness between technology development and its appropriation in smart cities, Technological Forecasting and Social Change, 9 (2020), 255-287.   Google Scholar

[27]

E. KropatR. A. Tikidji-Hamburyan and G.-W. Weber, Operations research in neuroscience, Ann. Oper. Res., 258 (2017), 1-4.  doi: 10.1007/s10479-017-2633-x.  Google Scholar

[28]

E. KropatM. Türkay and G.-W. Weber, Fuzzy analytics and stochastic methods in neurosciences, IEEE Transactions on Fuzzy Systems, 28 (2020), 1-121.   Google Scholar

[29]

C. Kanchibhotla, P. Venkatesh, D. Somayajulu and P. Radha krishna, An efficient cloud-based framework for digital media knowledge extraction, in IEEE International Conference on Big Data, (2019), 1841–1850. doi: 10.1109/BigData47090.2019.9005480.  Google Scholar

[30]

X. Li, New thinking of human resource management in the age of artificial intelligence, In: 2nd International Proceedings on International Conference on Systems, Computing, and Applications, Francis Academic Press, UK., (2018), 133–136. Google Scholar

[31]

M. R. Mohamad and N. M. Zin, Knowledge management and the competitiveness of small construction firms, Competitiveness Review: An International Business Journal, 29 (2019), 534-550.   Google Scholar

[32]

A. K. M. MasumL. S. BehM. A. K. Azad and K. Hoque, Intelligent human resource information system (i-HRIS): A holistic decision support framework for HR excellence, International Arab Journal of Information Technology, 15 (2018), 121-130.   Google Scholar

[33]

F. Malerba and M. McKelvey, Knowledge-intensive innovative entrepreneurship integrating schumpeter, evolutionary economics, and innovation systems, Small Business Economics, 54 (2020), 503-522.  doi: 10.1007/s11187-018-0060-2.  Google Scholar

[34]

P. Matsa and K. Gullamajji, To study impact of artificial intelligence on human resource management, International Research Journal of Engineering and Technology, (IRJET), 6 (2019), 1229–1238. Google Scholar

[35]

A. K. M. MasumL. S. BehM. A. K. Azad and K. Hoque, Intelligent human resource information system (i-HRIS): A holistic decision support framework for HR excellence, Int. Arab J. Inf. Technol., 15 (2018), 121-130.   Google Scholar

[36]

A. MaithiliR. V. KumariS. Rajamanickam and P. J. Paul, Neural network towards business forecasting, IOSR Journal of Engineering, 2 (2012), 831-836.  doi: 10.9790/3021-0204831836.  Google Scholar

[37]

R. Molina, N. P. De la Blanca and C. C. Taylor, Modern statistical techniques, Machine Learning, Neural and Statistical Classification, (1994), 29–49. Google Scholar

[38]

P. A. MerollaJ. V. ArthurR. Alvarez-IcazaA. S. CassidyJ. SawadaF. AkopyanB. L. JacksonN. ImamC. GuoY. NakamuraB. BrezzoI. VoS. K. EsserR. AppuswamyB. TabaA. AmirM. D. FlicknerW. P. RiskR. Manohar and D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, 345 (2014), 668-673.  doi: 10.1126/science.1254642.  Google Scholar

[39]

S. S. NicolaescuA. FloreaC. V. KiforU. FioreN. CocanI. Receu and P. Zanetti, Human capital evaluation in knowledge-based organizations based on big data analytics, Future Generation Computer Systems, 111 (2020), 654-667.   Google Scholar

[40]

A. ÖzmenG. W. WeberZ. Çavu\c{s}oğlu and Ö. Defterli, The new robust conic GPLM method with an application to finance: Prediction of credit default, J. Global Optim., 56 (2013), 233-249.  doi: 10.1007/s10898-012-9902-7.  Google Scholar

[41]

A. Özmen and G. W. Weber, Robust conic generalized partial linear models using RCMARS method-A robustification of CGPLM, in Proceedings of the Sixth Global Conference on Power Control and Optimization, (eds. N. N. Barsoum, D. Fairman and P. Vasant), American Institute of Physics, USA, 1499 (2012), 337–343 Google Scholar

[42]

A. Özmen and G. W. Weber, RMARS: Robustification of multivariate adaptive regression spline under polyhedral uncertainty, J. Comput. Appl. Math., 259 (2014), 914-924.  doi: 10.1016/j.cam.2013.09.055.  Google Scholar

[43]

A. ÖzmenG. W. Weberİ. Batmaz and E. Kropat, RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4780-4787.  doi: 10.1016/j.cnsns.2011.04.001.  Google Scholar

[44]

O. ParkJ. Bae and W. Hong, High-commitment HRM system, HR capability, and ambidextrous technological innovation, The International Journal of Human Resource Management, 30 (2019), 1526-1548.  doi: 10.1080/09585192.2017.1296880.  Google Scholar

[45]

K. Pettersson and M. Lindberg, Paradoxical spaces of feminist resistance: Mapping the margin to the masculinist innovation discourse, International Journal of Gender and Entrepreneurship, 5 (2013), 323-41.   Google Scholar

[46]

S. Poutanen and A. Kovalainen, Gendering innovation process in an industrial plant. Revisiting tokenism, gender and innovation, International Journal of Gender and Entrepreneurship, 5 (2013), 257-74.   Google Scholar

[47]

L. Pecis, Doing and undoing gender in innovation: Femininities and masculinities in innovation processes, Human Relations, 69 (2016), 2117-2140.   Google Scholar

[48]

J. PaschenJ. Kietzmann and T. C. Kietzmann, Artificial intelligence (AI) and its implications for market knowledge in B2B marketing, Journal of Business & Industrial Marketing, 34 (2019), 1410-1419.  doi: 10.1108/JBIM-10-2018-0295.  Google Scholar

[49]

T. PakizeF. Yerlikaya-Özkurt and G.-W. Weber, An approach to the mean shift outlier model by Tikhonov regularization and conic programming, Intelligent Data Analysis, 18 (2014), 79-94.  doi: 10.3233/IDA-130629.  Google Scholar

[50]

S. Pandely and P. Khaskel, Application of AI in human resource management and gen Y's reaction, International Journal of Recent Technology and Engineering, 8 (2019), 2277-3878.   Google Scholar

[51]

G. Stoet and D. C. Geary, The gender-equality paradox in science, technology, engineering, and mathematics education, Psychological Science, 29 (2018), 581-593.   Google Scholar

[52]

M. Sriram and L. Gandhi, Exploring the dynamica virtus of Machine Learning (ML) in human resource management - A critical analysis of IT industry, International Journal of Computer Sciences and Engineering, 5 (2017), 173-180.   Google Scholar

[53]

T. M. Scholz, Big Data in Organizations and the Role of Human Resource Management: A Complex Systems Theory-Based Conceptualization, Personalmanagement und Organisation, Peter Lang GmbH, New York, 2017. Google Scholar

[54]

R. V. Sunita, An optimizing preprocessing algorithm for enhanced web content, in soft computing: Theories and applications, Advances in Intelligent Systems and Computing, (eds. M. Pant, T. Sharma, O. Verma, R. Singla and A. Sikander), Springer, 1053 (2020), 63–71. Google Scholar

[55]

N. SamaniM. Gohari-Moghadam and A. A. Safavi, A simple neural network model for the determination of aquifer parameters, Journal of Hydrology, 340 (2007), 1-11.  doi: 10.1016/j.jhydrol.2007.03.017.  Google Scholar

[56]

V. Sharma, Artificial neural network applicability in business forecasting, International Journal of Emerging Research in Management & Technology, 1 (2012), 62-65.   Google Scholar

[57]

E. Savku and G. W. Weber, A stochastic maximum principle for a markov regime-switching jump-diffusion model with delay and an application to finance, J. Optim. Theory Appl., 179 (2018), 696-721.  doi: 10.1007/s10957-017-1159-3.  Google Scholar

[58]

P. TambeP. Cappelli and V. Yakubovich, Artificial intelligence in human resources management: Challenges and a path forward, California Management Review, 61 (2019), 15-42.  doi: 10.1177/0008125619867910.  Google Scholar

[59]

C. Y. Tung, An assessment of China's Taiwan policy under the third generation leadership, Asian Survey, 45 (2005), 343-361.   Google Scholar

[60]

V. TandonG. Ertug and G. Carnabuci, How do prior ties affect learning by hiring?, Journal of Management, 46 (2018), 287-320.   Google Scholar

[61]

R. A. Tikidji-HamburyanE. Kropat and G.-W. Weber, Preface operations research in neuroscience II, Ann. Oper. Res., 289 (2020), 1-4.  doi: 10.1007/s10479-020-03574-z.  Google Scholar

[62]

P. Taylan, F. Yerlikaya-Özkurt, B. Bilgiç Uçak and G.-W. Weber, A new outlier detection method based on convex optimization: Application to diagnosis of Parkinson's disease, Journal of Applied Statistics, (2020), 1–20. doi: 10.1080/02664763.2020.1864815.  Google Scholar

[63]

P. Vasant, I. Zelinka and G.-W. Weber, Intelligent computing and optimization, proceedings of the 3rd international conference on intelligent computing and optimization 2020, Advances in Intelligent Systems and Computing, Lecture Notes in Networks and Systems, Springer, 1324 (2020), 1–1327. doi: 10.1007/978-3-030-68154-8.  Google Scholar

[64]

G. W. Weberİ. BatmazG. KöksalP. Taylan and F. Yerlikaya-Özkurt, CMARS: A new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization, Inverse Probl. Sci. Eng., 20 (2012), 371-400.  doi: 10.1080/17415977.2011.624770.  Google Scholar

[65]

C. ZouW. Zhao and K. Siau, COVID-19 calls for remote reskilling and retraining, Cutter Business Technology Journal, 33 (2020), 21-25.   Google Scholar

[66]

J. ZhangH. JiangR. Wu and J. Li, Reconciling the dilemma of knowledge sharing: A network pluralism framework of firms' R & D alliance network and innovation performance, Journal of Management, 45 (2018), 2635-2665.  doi: 10.1177/0149206318761575.  Google Scholar

Figure 1.  Distance zones from large cities (red circles – 30 km, pink circles – 60 km)
Figure 2.  Model MLP for students graduating in 2018-2022
Figure 3.  Model MLP for students graduating in 2018-2019
Figure 4.  Model MLP for students graduating in 2020-2022
Table 1.  Dependent variable and independent variables selected for the innovation geolocation model
Willingness of representatives of the Z generation to work in an innovative company $Y$
Gender: $X_1$
Year of graduation: $X_2$
Place of residence (close, average, far away from a large city): $X_3$
Unemployment in the region: $X_4$
Balance of migration in the region: $X_5$
Expected salary (high, medium, low): $X_6$
Willingness to continue university education: $X_7$
Willingness to leave the place of residence: $X_8$
Individual work vs. group work: $X_9$
Remote work vs. traditional work in the company: $X_{10}$
Work with passion vs. just work: $X_{11}$
Willingness of representatives of the Z generation to work in an innovative company $Y$
Gender: $X_1$
Year of graduation: $X_2$
Place of residence (close, average, far away from a large city): $X_3$
Unemployment in the region: $X_4$
Balance of migration in the region: $X_5$
Expected salary (high, medium, low): $X_6$
Willingness to continue university education: $X_7$
Willingness to leave the place of residence: $X_8$
Individual work vs. group work: $X_9$
Remote work vs. traditional work in the company: $X_{10}$
Work with passion vs. just work: $X_{11}$
[1]

Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014

[2]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[3]

Albert Corominas, Amaia Lusa, Rafael Pastor. Human resource management using working time accounts with expiry of hours. Journal of Industrial & Management Optimization, 2009, 5 (3) : 569-584. doi: 10.3934/jimo.2009.5.569

[4]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[5]

Andreas Chirstmann, Qiang Wu, Ding-Xuan Zhou. Preface to the special issue on analysis in machine learning and data science. Communications on Pure & Applied Analysis, 2020, 19 (8) : i-iii. doi: 10.3934/cpaa.2020171

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[8]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[9]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[10]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[11]

Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005

[12]

Ana Alonso Rodríguez, Hugo Beirão da Veiga, Alfio Quarteroni. The research of Alberto Valli. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : xi-xvii. doi: 10.3934/dcdss.2016.9.1xi

[13]

Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics & Games, 2014, 1 (1) : 121-151. doi: 10.3934/jdg.2014.1.121

[14]

Hugo Beirão da Veiga, Alessandro Morando, Paola Trebeschi. The research of Paolo Secchi. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : iii-ix. doi: 10.3934/dcdss.2016.9.1iii

[15]

James H. Lambert, Benjamin L. Schulte, Nilesh N. Joshi. Multiple criteria intelligence tracking for detecting extremes from sequences of risk incidents. Journal of Industrial & Management Optimization, 2008, 4 (3) : 511-533. doi: 10.3934/jimo.2008.4.511

[16]

Aurea Martínez, Francisco J. Fernández, Lino J. Alvarez-Vázquez. Water artificial circulation for eutrophication control. Mathematical Control & Related Fields, 2018, 8 (1) : 277-313. doi: 10.3934/mcrf.2018012

[17]

M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299

[18]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[19]

Daniel Franco, Chris Guiver, Phoebe Smith, Stuart Townley. A switching feedback control approach for persistence of managed resources. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021109

[20]

A. K. Misra, Gauri Agrawal, Kusum Lata. Modeling the influence of human population and human population augmented pollution on rainfall. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021169

[Back to Top]