[1]
|
M. Al-Baali, Y. Narushima and H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Comput. Optim. Appl., 60 (2015), 89-110.
doi: 10.1007/s10589-014-9662-z.
|
[2]
|
M. Aliyu, P. Kumam and B. Auwal, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145 (2019), 507-520.
doi: 10.1016/j.apnum.2019.05.012.
|
[3]
|
S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, J. Comput. Appl. Math., 234 (2010), 1374-1386.
doi: 10.1016/j.cam.2010.01.052.
|
[4]
|
X. Bai, Z. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
doi: 10.1007/s10957-016-0903-4.
|
[5]
|
J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141.
|
[6]
|
E. Birgin and J. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43 (2001), 117-128.
doi: 10.1007/s00245-001-0003-0.
|
[7]
|
S. Bojari and M. Eslahchi, Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization, Numer. Algor., 83 (2020), 901-933.
doi: 10.1007/s11075-019-00709-7.
|
[8]
|
K. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.
doi: 10.4310/CMS.2008.v6.n2.a12.
|
[9]
|
M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1.
|
[10]
|
B. Chen and P. Harker, Smooth approximations to nonlinear complementarity problems, SIAM J. Optim., 7 (1997), 403-420.
doi: 10.1137/S1052623495280615.
|
[11]
|
C. Chen and L. Zhang, Finding Nash equilibrium for a class of multi-person noncooperative games via solving tensor complementarity problem, Appl. Number. Math., 145 (2019), 458-468.
doi: 10.1016/j.apnum.2019.05.013.
|
[12]
|
Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[13]
|
Y. Dai, L. Liao and D. Li, On restart procedures for the conjugate gradient method, Numer. Algor., 35 (2004), 249-260.
doi: 10.1023/B:NUMA.0000021761.10993.6e.
|
[14]
|
W. Ding, L. Qi and Y. Wei, $\mathcal M$-tensors and nonsingular $\mathcal M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038.
|
[15]
|
W. Ding and Y. Wei, Solving multi-linear systems with $\mathcal M$-tensors, J. Sci. Comput., 68 (2016), 689-715.
doi: 10.1007/s10915-015-0156-7.
|
[16]
|
W. Ding, Z. Luo and L. Qi, $\mathcal P$-tensors, $\mathcal P_0$-tensors, and their applications, Linear Algebra Appl., 555 (2018), 336-354.
doi: 10.1016/j.laa.2018.06.028.
|
[17]
|
S. Du, L. Zhang, C. Chen and L. Qi, Tensor absolute value equations, Sci. China Math., 61 (2018), 1695-1710.
doi: 10.1007/s11425-017-9238-6.
|
[18]
|
S. Du and L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Glob. Optim., 73 (2019), 789-800.
doi: 10.1007/s10898-018-00731-4.
|
[19]
|
S. Du, M. Che and Y. Wei, Stochastic structured tensors to stochastic complementarity problems, Comput. Optim. Appl., 75 (2020), 649-668.
doi: 10.1007/s10589-019-00144-3.
|
[20]
|
R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154.
doi: 10.1093/comjnl/7.2.149.
|
[21]
|
M. Gowda, Z. Luo, L. Qi and N. Xiu, $\mathcal Z$-tensors and complementarity problems, arXiv: 1510.07933v2
|
[22]
|
W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170-192.
doi: 10.1137/030601880.
|
[23]
|
L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180 (2019), 949-963.
doi: 10.1007/s10957-018-1422-2.
|
[24]
|
M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[25]
|
S. Hu, Z. Huang, C. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50 (2013), 508-531.
doi: 10.1016/j.jsc.2012.10.001.
|
[26]
|
Z. Huang and L. Qi, Formulating an n-person noncoorperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7.
|
[27]
|
Z. Huang and L. Qi, Tensor complementarity problems–Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z.
|
[28]
|
Z. Huang and L. Qi, Tensor complementarity problems–Part III: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.
doi: 10.1007/s10957-019-01573-0.
|
[29]
|
X. Jiang and J. Jian, Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search, J. Comput. Appl. Math., 348 (2019), 525-534.
doi: 10.1016/j.cam.2018.09.012.
|
[30]
|
Y. Li, S. Du and L. Zhang, Tensor quadratic eigenvalue complementarity problem, Pac. J. Optim., 17 (2021), 251-268.
|
[31]
|
C. Ling, H. He and L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143-168.
doi: 10.1007/s10589-015-9767-z.
|
[32]
|
C. Ling, H. He and L. Qi, Higher-degree eigenvalue complementarity problems for tensors, Comput. Optim. Appl., 64 (2016), 149-176.
doi: 10.1007/s10589-015-9805-x.
|
[33]
|
C. Ling, W. Yan, H. He and L. Qi, Further study on tensor absolute value equations, Sci. China Math., 63 (2020), 2137-2156.
doi: 10.1007/s11425-018-9560-3.
|
[34]
|
D. Liu, W. Li and S. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear Multilinear A., 66 (2018), 1726-1749.
doi: 10.1080/03081087.2017.1369929.
|
[35]
|
J. Liu, S. Du and Y. Chen, A sufficient descent nonlinear conjugate gradient method for solving $\mathcal M$-tensor equations, J. Comput. Appl., 371 (2020), 112709.
doi: 10.1016/j.cam.2019.112709.
|
[36]
|
I. Livieris and P. Pintelas, A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization, J. Comput. Appl. Math., 239 (2013), 396-405.
doi: 10.1016/j.cam.2012.09.007.
|
[37]
|
Z. Luo, L. Qi and N. Xiu, The sparsest solutions to $\mathcal Z$-tensor complementarity problems, Optim. Lett., 11 (2017), 471-482.
doi: 10.1007/s11590-016-1013-9.
|
[38]
|
G. Meurant, On prescribing the convergence behavior of the conjugate gradient algorithm, Numer. Algor., 84 (2020), 1353-1380.
doi: 10.1007/s11075-019-00851-2.
|
[39]
|
Q. Ni and L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Global Optim., 61 (2015), 627-641.
doi: 10.1007/s10898-014-0209-8.
|
[40]
|
M. Powell, Restart procedures for the conjugate gradient method, Math. Program., 12 (1977), 241-254.
doi: 10.1007/BF01593790.
|
[41]
|
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.
|
[42]
|
L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.
doi: 10.1016/j.laa.2013.03.015.
|
[43]
|
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017.
doi: 10.1137/1.9781611974751.ch1.
|
[44]
|
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Advances in Mechanics and Mathematics, 39. Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6.
|
[45]
|
L. Qi and Z. Huang, Tensor complementarity problems–Part II: Solution methods, J. Optim. Theory Appl., 183 (2019), 365-385.
doi: 10.1007/s10957-019-01568-x.
|
[46]
|
Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5.
|
[47]
|
Y. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 (2016), 1069-1078.
doi: 10.1007/s10957-015-0800-2.
|
[48]
|
Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308-323.
|
[49]
|
Z. Wan, Z. Yang and Y. Wang, New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Lett., 24 (2011), 16-22.
doi: 10.1016/j.aml.2010.08.002.
|
[50]
|
X. Wang, M. Che and Y. Wei, Global uniqueness and solvability of tensor complementarity problems for $\mathcal{H}_+$-tensors, Numer. Algorithms, 84 (2020), 567-590.
doi: 10.1007/s11075-019-00769-9.
|
[51]
|
X. Wang, M. Che and Y. Wei, Preconditioned tensor splitting AOR iterative methods for $\mathcal H$-tensor equations,, Numer. Linear Algebra Appl., 27 (2020), e2329.
doi: 10.1002/nla.2329.
|
[52]
|
Y. Wei and W. Ding, Theory and Computation of Tensors: Multi-Dimensional Arrays, Academic Press, London, 2016.
|
[53]
|
S. Xie, D. Li and H. Xu, An iterative method for finding the least solution to the tensor complementarity problem, J. Optim. Theory Appl., 175 (2017), 119-136.
doi: 10.1007/s10957-017-1157-5.
|
[54]
|
H. Xu, D. Li and S. Xie, An equivalent tensor equation to the tensor complementarity problem with positive semi-definite $\mathcal Z$-tensor, Optim. Lett., 13 (2019), 685-694.
doi: 10.1007/s11590-018-1268-4.
|
[55]
|
Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32 (2011), 1236-1250.
doi: 10.1137/100813671.
|
[56]
|
Y. Yang and Q. Yang, A Study on Eigenvalues of Higher-Order Tensors and Related Polynomial Optimization Problems, Science Press, Beijing, 2015.
|
[57]
|
G. Yu, L. Guan and W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optim. Methods Softw., 23 (2008), 275-293.
doi: 10.1080/10556780701661344.
|
[58]
|
G. Yuan, X. Wang and Z. Sheng, Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions, Numer. Algor., 84 (2020), 935-956.
doi: 10.1007/s11075-019-00787-7.
|
[59]
|
K. Zhang, H. Chen and P. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.
doi: 10.3934/jimo.2018049.
|
[60]
|
L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561-572.
doi: 10.1007/s00211-006-0028-z.
|
[61]
|
L. Zhang and W. Zhou, On the global convergence of the Hager-Zhang conjugate gradient method with the Armijo line search, Acta Math. Sci., 28 (2008), 840-845.
|
[62]
|
L. Zhang, L. Qi and G. Zhou, $\mathcal M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339.
|
[63]
|
G. Zhou, L. Qi and S. Wu, On the largest eigenvalue of a symmetric nonnegative tensor, Numer. Linear Algebra Appl., 20 (2013), 913-928.
doi: 10.1002/nla.1885.
|