\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock

  • * Corresponding author: Binghai Zhou

    * Corresponding author: Binghai Zhou 
Abstract / Introduction Full Text(HTML) Figure(3) / Table(5) Related Papers Cited by
  • Cross-docking is a kind of process that products are unloaded in front of the inbound doors, consolidated based on the downstream demand, and then directly transferred to the outbound doors without a long storage process during the transportation. In this paper, a multi-door cross-dock truck scheduling problem is investigated in which the scheduling and sequencing assignment of trucks need to be considered, with the objectives of minimizing the inner transportation cost in the cross-dock and the total truck waiting cost. The major contribution of this paper is that a novel product-related time window constraint and the temporary storage area are firstly introduced to adapt to different physical conditions of goods considering real-world requirements. Then, a Lagrangian relaxation algorithm is proposed which aims to decompose the relaxed problem into several easy-to-be-solved sub-problems. Besides, a subgradient algorithm is used at each iteration to further deal with these sub-problems. Finally, theory analysis and simulation experiments of different problem scales are carried out during the comparison with a Greedy algorithm to evaluate the performance of the proposed algorithm. Results indicate that the Lagrangian relaxation algorithm is able to achieve more satisfactory near-optimal solutions within an acceptable time.

    Mathematics Subject Classification: Primary: 90B35; Secondary: 90C11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The scheduling process at cross-dock

    Figure 2.  Several values of %gap (group2) based on the different value of slackness

    Figure 3.  Values of %gap and %dev in group 2

    Table 1.  Computer results for problems in group 1, b = 0.98, 0.95, and 0.90

    p=0.98 p=0.95 p=0.90
    L G L G L G
    I #t×#d s IP LR %gap CPU UB %dev IP LR %gap CPU UB %dev IP LR %gap CPU UB %dev
    1 15 1.683 1.683 5.32 0.55 1.815 10.43 1.98 1.98 4.97 0.56 2.187 10.43 1.643 1.643 5.27 0.46 1.99 11.99
    2 20 1.701 1.701 4.82 0.5 1.89 8.37 2.1 2.1 4.38 0.33 2.278 8.45 1.785 1.785 5.39 0.42 1.754 8.03
    3 4×2 30 1.729 1.729 3.44 0.53 2.004 15.27 2.059 2.059 3.55 0.42 2.358 14.54 1.997 1.997 3.59 0.51 1.769 14.69
    4 15 2.56 2.56 9.55 0.66 2.45 14.81 2.56 2.56 9.27 0.68 2.816 14.52 2.765 2.765 9.83 0.84 3.013 14.96
    5 20 2.26 2.26 8.15 0.8 3.064 13.02 2.659 2.659 7.03 0.8 3.225 12.76 2.872 2.872 6.89 0.8 2.838 13.4
    6 5×3 30 2.498 2.498 10.55 0.65 2.648 12.76 2.602 2.602 9.02 0.8 3.152 12.76 2.862 2.862 11 0.96 3.089 12.89
    7 15 2.709 2.709 6.58 1.59 3.954 26.35 3.078 3.078 6.33 1.61 4.163 26.62 2.924 2.924 6.46 1.07 3.83 27.95
    8 20 3.108 3.108 4.32 1.64 3.533 25 3.205 3.205 4.32 1.06 4.257 24.27 2.66 2.66 4.62 1.33 4.087 23.06
    9 6×3 30 2.495 2.495 7.55 1.6 3.735 26.32 3.08 3.08 6.29 1.02 4.016 26.06 2.957 2.957 6.54 1.27 4.257 27.1
    10 15 3.31 3.31 4.76 1.92 4.153 13.37 3.755 3.988 4.21 2.35 4.72 13.37 4.068 4.068 4.04 1.88 4.153 12.84
    11 20 3.425 3.624 6.35 1.93 4.337 14.81 3.89 3.897 4.96 1.91 4.518 15.11 4.155 4.17 6.05 2.38 3.433 15.87
    12 7×3 30 3.257 3.471 3.69 3.13 3.747 21.32 3.572 3.732 3.55 2.66 4.625 21.98 3.375 3.471 3.41 3.19 4.163 22.2
    13 15 3.18 3.381 7.79 5.86 4.848 29.61 3.58 3.636 6.04 7.1 5.051 30.53 3.09 3.09 7.61 7.1 3.788 30.84
    14 20 3.155 3.301 6.23 4.89 4.847 29.92 3.42 3.628 6.23 7.41 5.049 30.53 3.171 3.301 6.17 4.94 3.786 29
    15 7×4 30 3.178 3.204 6.83 5.38 4.262 32.8 3.595 3.641 5.38 8.41 5.014 31.24 3.285 3.386 6.62 8.41 4.061 32.49
    16 15 3.65 3.826 5.76 4.4 5.089 24.08 4.058 4.159 5.7 4.27 5.472 24.08 3.588 3.701 5.81 5.34 5.472 25.28
    17 20 3.425 3.425 5.58 5.79 5.329 21.76 4.117 4.228 5.03 4.45 5.438 22.91 4.489 4.608 5.53 5.57 4.894 23.14
    18 8×3 30 3.785 3.85 6.41 8.54 4.745 22.79 4.095 4.184 5.57 10.05 5.214 23.49 4.258 4.435 7.19 8.37 4.432 24.19
    19 15 3.455 3.485 4.57 8.09 5.375 35.21 3.986 4.1 4.76 7.03 5.973 36.3 3.698 3.772 4.57 7.03 5.973 35.94
    20 20 3.576 3.678 5.81 6.36 4.802 34.09 4.168 4.18 4.76 7.64 5.856 33.42 3.259 3.344 5.09 9.17 6.09 33.09
    21 8×4 30 3.385 3.428 6.14 9.16 5.446 32.42 4.15 4.18 4.76 11.33 5.856 33.42 3.857 3.929 4.52 11.33 5.739 33.09
    Instance is short for $i$, $t$ for trucks, $d$ for doors, $s$ for the slackness of temporary storage capacity (%), $L$ for the Lagrangian relaxation algorithm, $G$ for the Greedy algorithm. The value of $IP, LP$ and $UB$ is in $10^5$.
     | Show Table
    DownLoad: CSV

    Table 2.  Computer results for problems in group 2 (slackness = 10)

    Instances #trucks×#doors Lagrangian relaxation algorithm Greedy algorithm
    LR %gap CPU time UB %dev
    1 9×3 4.759 5.21 18 5.965 18.8
    2 9×4 4.856 5.28 19.76 6.382 24.5
    3 9×5 4.661 4.38 30.13 6.8 39.5
    4 10×3 5.527 5.25 42.36 6.876 14.43
    5 10×4 5.595 4.76 15.57 7.014 21.56
    6 10×5 5.055 5.75 44.57 7.609 43.35
    7 11×5 6.017 7.86 77.65 8.618 31.41
    8 11×6 5.997 9.09 80.49 9.149 38.69
    9 15×6 8.223 9.09 177.84 12.43 37.39
    10 15×7 8.21 7.42 124.02 13.09 47.64
    11 20×10 10.89 9.91 265.06 20.73 71.41
     | Show Table
    DownLoad: CSV

    Table 3.  Computer results for problems in group 2 (slackness = 15)

    Instances #trucks×#doors Lagrangian relaxation algorithm Greedy algorithm
    LR %gap CPU time UB %dev
    1 9×3 4.742 5.17 24.5 5.892 19.3
    2 9×4 4.813 4.97 22.69 6.382 24.5
    3 9×5 4.559 5.65 36.25 6.66 40.72
    4 10×3 5.456 5.09 40.71 6.674 16.1
    5 10×4 5.195 4.76 31.97 7.142 30.92
    6 10×5 5.355 5.3 42.97 7.609 35.32
    7 11×5 6.017 6.54 55.32 8.618 33.86
    8 11×6 5.6 7.45 91.46 9.149 41.4
    9 15×6 8.403 8.26 125.77 12.43 35.68
    10 15×7 8.237 6.65 81.64 13.18 49.35
    11 20×10 10.64 8.26 164.22 20.69 68.47
     | Show Table
    DownLoad: CSV

    Table 4.  Computer results for problems in group 2 (slackness = 20)

    Instances #trucks×#doors Lagrangian relaxation algorithm Greedy algorithm
    LR %gap CPU time UB %dev
    1 9×3 5.035 4.53 18.16 6.003 13.12
    2 9×4 4.764 5.32 27.23 6.173 29.83
    3 9×5 4.758 6.02 26.69 6.899 34.3
    4 10×3 5.466 4.92 29.03 6.674 16.1
    5 10×4 5.087 5.56 27.07 7.142 32.45
    6 10×5 5.075 4.9 40.41 7.609 42.79
    7 11×5 6.037 7.41 62.67 8.618 32.18
    8 11×6 5.777 7.41 62.09 9.139 46.64
    9 15×6 8.012 7.41 133.29 12.4 36.94
    10 15×7 8.045 5.82 159.65 13.22 45.71
    11 20×10 10.85 7.41 226.27 20.73 66.9
     | Show Table
    DownLoad: CSV

    Table 5.  Computer results for problems in group 2 (slackness = 30)

    Instances #trucks×#doors Lagrangian relaxation algorithm Greedy algorithm
    LR %gap CPU time UB %dev
    1 9×3 4.76 4.8 17.01 5.965 19.3
    2 9×4 4.647 5.08 22.76 6.108 30.38
    3 9×5 4.684 3.9 22.59 6.8 39.5
    4 10×3 5.943 4.9 35.42 6.344 6.74
    5 10×4 5.375 4.76 42.1 7.082 26.54
    6 10×5 5.315 4.76 47.71 7.609 36.34
    7 11×5 6.057 4.76 50.29 8.618 35.51
    8 11×6 5.817 6.54 77.44 9.149 46.99
    9 15×6 8.221 6.54 114.18 12.37 40.67
    10 15×7 8.527 4.29 148.43 13.3 47.33
    11 20×10 10.79 5.66 302.54 23.68 70.76
     | Show Table
    DownLoad: CSV
  • [1] A. Amini and R. Tavakkoli-Moghaddam, A bi-objective truck scheduling problem in a cross-docking center with probability of breakdown for trucks, Computers & Industrial Engineering, 96 (2016), 180-191.  doi: 10.1016/j.cie.2016.03.023.
    [2] H. ArbabiM. M. Nasiri and A. Bozorgi-Amiri, A hub-and-spoke architecture for a parcel delivery system using the cross-docking distribution strategy, Eng. Optim., 53 (2021), 1593-1612.  doi: 10.1080/0305215X.2020.1808973.
    [3] M. T. Assadi and M. Bagheri, Differential evolution and Population-based simulated annealing for truck scheduling problem in multiple door cross-docking systems, Computers & Industrial Engineering, 96 (2016), 149-161.  doi: 10.1016/j.cie.2016.03.021.
    [4] P. BodnarR. de Koster and K. Azadeh, Scheduling trucks in a cross-dock with mixed service mode dock doors, Transportation Science, 51 (2017), 112-131.  doi: 10.1287/trsc.2015.0612.
    [5] N. Boysen and M. Fliedner, Cross dock scheduling: Classification, literature review and research agenda, Omega, 38 (2010), 413-422.  doi: 10.1016/j.omega.2009.10.008.
    [6] A. ChiarelloM. Gaudioso and M. Sammarra, Truck synchronization at single door cross-docking terminals, OR Spectrum, 40 (2018), 395-447.  doi: 10.1007/s00291-018-0510-x.
    [7] H. ChenC. Chu and J. M. Proth, An improvement of the Lagrangean relaxation approach for job shop scheduling: A dynamic programming method, IEEE Transactions on Robotics and Atomation, 14 (1998), 786-795.  doi: 10.1109/70.720354.
    [8] J. Chen, K. Wang and Y. Huang, An integrated inbound logistics mode with intelligent scheduling of milk-run collection, drop and pull delivery and LNG vehicles, Journal of Intelligent Manufacturing, (2020), 1–9. doi: 10.1007/s10845-020-01637-3.
    [9] L. ChenY. Liu and A. Langevin, A multi-compartment vehicle routing problem in cold-chain distribution, Comput. Oper. Res., 111 (2019), 58-66.  doi: 10.1016/j.cor.2019.06.001.
    [10] U. ClausenD. DiekmannM. Pöting and C. Schumacher, Operating parcel transshipment terminals: A combined simulation and optimization approach, Journal of Simulation, 11 (2017), 2-10.  doi: 10.1057/s41273-016-0032-y.
    [11] H. CorstenF. Becker and H. Salewski, Integrating truck and workforce scheduling in a cross-dock: Analysis of different workforce coordination policies, Journal of Business Economics, 90 (2020), 207-237. 
    [12] C. DongQ. LiB. Shen and X. Tong, Sustainability in supply chains with behavioral concerns, Sustainability, 11 (2019), 4051.  doi: 10.3390/su11154051.
    [13] G. B. FonsecaT. H. Nogueira and M. G. Ravetti, A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem, European J. Oper. Res., 275 (2019), 139-154.  doi: 10.1016/j.ejor.2018.11.033.
    [14] T. Garai and H. Garg, Multi-objective linear fractional inventory model with possibility and necessity constraints under generalised intuitionistic fuzzy set environment, CAAI Transactions on Intelligence Technology, 4 (2019), 175-181. 
    [15] M. GaudiosoM. F. Monaco and M. Sammarra, A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time, Omega, 101 (2021), 102255.  doi: 10.1016/j.omega.2020.102255.
    [16] A. Golshahi-RoudbanehM. Hajiaghaei-Keshteli and M. M. Paydar, Developing a lower bound and strong heuristics for a truck scheduling problem in a cross-docking center, Knowledge-Based Systems, 129 (2017), 17-38.  doi: 10.1016/j.knosys.2017.05.006.
    [17] O. Guemri, P. Nduwayo, R. Todosijević, S. Hanafi and F. Glover, Probabilistic tabu search for the cross-docking assignment problem, European J. Oper. Res., 277 (2019), 875–885., doi: 10.1016/j.ejor.2019.03.030.
    [18] A. Gunawan, A. T. Widjaja, P. Vansteenwegen and V. F. Yu, A matheuristic algorithm for solving the vehicle routing problem with cross-docking, International Conference on Learning and Intelligent Optimization Springer, (2020), 9–15. doi: 10.1007/978-3-030-53552-0_2.
    [19] A. GutierrezL. DieulleN. Labadie and N. Velasco, A hybrid metaheuristic algorithm for the vehicle routing problem with stochastic demands, Comput. Oper. Res., 99 (2018), 135-147.  doi: 10.1016/j.cor.2018.06.012.
    [20] A. L. Ladier and G. Alpan, Robust cross-dock scheduling with time windows, Computers & Industrial Engineering, 99 (2016), 16-28.  doi: 10.1016/j.cie.2016.07.003.
    [21] A. L. Ladier and G. Alpan, Crossdock truck scheduling with time windows: Earliness, tardiness and storage policies, J. Intell. Manufacturing, 29 (2018), 569-583. 
    [22] S. M. Mousavi and B. Vahdani, Cross-docking location selection in distribution systems: A new intuitionistic fuzzy hierarchical decision model, International J. Computational Intelligence Systems, 9 (2016), 91-109.  doi: 10.1080/18756891.2016.1144156.
    [23] W. NassiefI. Contreras and R. As'ad, A mixed-integer programming formulation and Lagrangean relaxation for the cross-dock door assignment problem, International Journal of Production Research, 54 (2016), 494-508.  doi: 10.1080/00207543.2014.1003664.
    [24] W. Nassief, I. Contreras and B. Jaumard, A comparison of formulations and relaxations for cross-dock door assignment problems, Comput. Oper. Res., 94 (2018), 76–88., doi: 10.1016/j.cor.2018.01.022.
    [25] S. NiroomandH. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA transactions, 107 (2020), 117-133.  doi: 10.1016/j.isatra.2020.07.033.
    [26] C. SerranoX. Delorme and A. Dolgui, Scheduling of truck arrivals, truck departures and shop-floor operation in a cross-dock platform, based on trucks loading plans, International Journal of Production Economics, 194 (2017), 102-112.  doi: 10.1016/j.ijpe.2017.09.008.
    [27] I. SeyediM. Hamedi and R. Tavakkoli-Moghaddam, Truck Scheduling in a Cross-Docking Terminal by Using Novel Robust Heuristics, International Journal of Engineering, 32 (2019), 296-305. 
    [28] M. ShakeriM. Y. H. LowS. J. Turner and E. W. Lee, An efficient incremental evaluation function for optimizing truck scheduling in a resource-constrained crossdock using metaheuristics,, Expert Systems with Applications, 45 (2016), 172-184.  doi: 10.1016/j.eswa.2015.09.041.
    [29] J. G. Urzúa-MoralesJ. P. Sepulveda-RojasM. AlfaroG. FuertesR. Ternero and M. Vargas, Logistic modeling of the last mile: Case study santiago, chile,, Sustainability, 12 (2020), 648.  doi: 10.3390/su12020648.
    [30] B. Vahdani and S. Shahramfard, A truck scheduling problem at a cross-docking facility with mixed service mode dock doors, Engineering Computations, 12 (2019), 648. 
    [31] R. H. WalivU. MishraH. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973.  doi: 10.1007/s13369-020-04618-z.
    [32] Z. Yong-wu, A Quantity discount model for two-echelon supply chain coordination under stochastic demand, Systems Engineering-Theory & Practice, 7 (2006), 25-32. 
    [33] B. H. Zhou and W. L. Liu, A modified column generation heuristic for hybrid flow shop multiple orders per job scheduling problem, International Journal of Manufacturing Technology and Management, 33 (2019), 88-113.  doi: 10.1504/IJMTM.2019.100166.
    [34] B. H. ZhouM. Yin and Z. Q. Lu, An improved Lagrangian relaxation heuristic for the scheduling problem of operating theatres, Computers & Industrial Engineering, 101 (2016), 490-503.  doi: 10.1016/j.cie.2016.09.003.
    [35] W. Zhou and Y. H. JIN, Fuzzy subgradient algorithm for solving Lagrangian relaxation dual problem, Control Decis., 11 (2004), 1213-1217. 
    [36] L. ZhuX. RenC. Lee and Y. Zhang, Coordination contracts in a dual-channel supply chain with a risk-averse retailer, Sustainability, 9 (2017), 2148.  doi: 10.3390/su9112148.
  • 加载中

Figures(3)

Tables(5)

SHARE

Article Metrics

HTML views(2261) PDF downloads(605) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return