
-
Previous Article
Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty
- JIMO Home
- This Issue
-
Next Article
Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Optimal pricing, ordering, and credit period policies for deteriorating products under order-linked trade credit
1. | Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan |
2. | Artificial Intelligence for Operations Management Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan |
3. | Department of Business Administration, Asia University, Taichung, Taiwan |
4. | Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan |
5. | Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia |
In the modern global economy, trade credit financing is typical in business transactions for both sellers and buyers. The seller offers a credit period to attract new buyers or stimulate demand, and the buyer takes the opportunity to accumulate revenue. To obtain this benefit, the seller prefers trade credit policies that are dependent on the quantity ordered, referred to as order-linked trade credit. The buyer can obtain the benefits from a fully delayed payment if their order is sufficiently large. Similarly, the seller can sell many products while granting a credit period. Otherwise, the buyer receives only partial trade credit, and the seller can take the opportunity of both cash and credit payments. In this study, an economic order quantity (EOQ) inventory model for deteriorating products, under default risk control-based trade credit, is formulated using a discounted cash flow approach. The seller offers to the buyer order-linked trade credit with price-and credit-period-dependent demand. The optimal selling price, credit period policies, and replenishment cycle time are determined simultaneously, while maximizing the present value of the seller's total profit. Moreover, this research provides numerical examples and sensitivity analysis to illustrate the theoretical results, solution procedure, and gain managerial insights. 200 words.
References:
[1] |
A. A. A. Abuhommous,
The impact of offering trade credit on firms' profitability, J. Cor. Account. Fina., 28 (2017), 29-40.
doi: 10.1002/jcaf.22298. |
[2] |
A. A. A. Aggarwal and S. P. Jaggi,
Ordering policies of deteriorating items under permissible delay in payments, J. Opers. Res. Soci., 46 (1995), 658-662.
|
[3] |
D. Atnafu and A. Balda, He impact of inventory management practice on firms' competitiveness and organizational performance: Empirical evidence from micro and small enterprises in ethiopia, Cogent. Busi. Mag., 5 (2018). |
[4] |
Y. Benoist, P. Foulon and F. Labourie,
Flots d'Anosov a distributions stable et instable differentiables, J. Amer. Math. Soc., 5 (1992), 33-74.
doi: 10.2307/2152750. |
[5] |
A. Cambini and L. Martein, Generalized convexity and optimization: Theory and application, Springer-Verlag Berlin Heidelberg, German, (2009), 245. |
[6] |
L. E. Cárdenas-Barrón, A. A. Shaikh, S. Tiwari and G. Trevino-Garza, An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit, Comput. Indust. Engi., 139 (2020). |
[7] |
S. Chen, L. E. Cárdenas-barrón and J. Teng,
Retailer's economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity,, Inter. J. Prod. Eco., 155 (2014), 284-291.
doi: 10.1016/j.ijpe.2013.05.032. |
[8] |
K. Chung, S. Lin and H. M. Srivastava,
The inventory models under conditional trade credit in a supply chain system, Appli. Mathem. Model., 37 (2013), 10036-10052.
doi: 10.1016/j.apm.2013.05.044. |
[9] |
C. Dye, C. Yang and F. Kung,
The inventory models under conditional trade credit in a supply chain system, Appli. Mathem. Model., 37 (2013), 10036-10052.
doi: 10.1016/j.apm.2013.05.044. |
[10] |
P. M. Ghare and G. F. Schrader,
A model for an exponential decaying inventory, J. Indust. Eng., 14 (1963), 238-243.
|
[11] |
S. K. Goyal,
Economic order quantity under conditions of permissible delay in payments, J. Opers. Res. Soci., 36 (1985), 335-338.
|
[12] |
J. Heizer, B. Render and C. Munson, Operations management: Sustainability and supply chain management, Pearson Education Inc, New Jersey, 2016. |
[13] |
Y. Huang,
Economic order quantity under conditionally permissible delay in payment, European Journal of Operational Research, 176 (2007), 911-924.
doi: 10.1016/j.ejor.2005.08.017. |
[14] |
C. K. Jaggi, V. S. S. Yadavalli, A. Sharma and S. Tiwari,
A fuzzy EOQ model with allowable shortage under different trade credit terms, Appli. Mathem.Inform. Sci., 10 (2016), 785-805.
|
[15] |
M. Khouja and A. Mehrez,
Optimal inventory policy under different supplier credit policies, J. Manufact. Sys., 15 (1996), 334-339.
doi: 10.1016/0278-6125(96)84196-3. |
[16] |
R. Li, Y. Chan, C. Chang and L. E. Cárdenas-barrón,
Pricing and lot-sizing policies for perishable products with advance-cash-credit-payments by a discounted cash-flow analysis, Inter. J. Prod. Eco., 193 (2017), 578-598.
|
[17] |
R. Li, K. Skouri, J. Teng and W. Yang,
Seller's optimal replenishment policy and payment term among advance, cash, and credit payments, Inter. J. Prod. Eco., 197 (2018), 35-42.
|
[18] |
R. Li, J. Teng and Y. Zheng,
Optimal credit term, order quantity and selling price for perishable products When demand depends on selling price, expiration date, and credit period, Annals Oper. Res., 280 (2019), 377-405.
doi: 10.1007/s10479-019-03310-2. |
[19] |
W. Luo and K. H. Shang, Technical note - managing inventory for firms with trade credit and deficit penalty, Oper. Res., (2019), 1–11. |
[20] |
P. Mahata, G. C. Mahata and S. K. De, An economic order quantity model under two-level partial trade credit for time varying deteriorating items, J. Sys. Sci. Oper. Logist., (2018), 1–17. |
[21] |
L. Ouyang, J. Teng, S. K. Goyal and C. Yang,
An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity, Eur. J. Oper. Res., 194 (2009), 418-431.
doi: 10.1016/j.ejor.2007.12.018. |
[22] |
B. Sarkar,
An EOQ model with delay in payments and time varying deterioration rate, Mathem. Computer Model., 55 (2012), 367-377.
doi: 10.1016/j.mcm.2011.08.009. |
[23] |
N. H. Shah,
Manufacturer-retailer inventory model for deteriorating items with price-sensitive credit-linked demand under two-level trade credit financing and profit sharing contract, Cogent Engin., 83 (2015), 1-14.
|
[24] |
N. H. Shah,
Retailer's optimal policies for deteriorating items with a fixed lifetime under order-linked conditional trade credit, Uncert. Supp. Chain Manag., 5 (2017), 126-134.
|
[25] |
N. H. Shah, U. Chaudhari and M. Y. Jani,
Optimal policies for time-varying deteriorating item with preservation technology under selling price and trade credit dependent quadratic demand in a supply chain, Inter. J. Appli. Comput. Mathem., 3 (2017), 363-379.
doi: 10.1007/s40819-016-0141-3. |
[26] |
H. Soni, N. H. Shah and C. Jaggi,
Inventory models and trade credit?: A review, Contr. Cyber., 39 (2010), 867-882.
|
[27] |
L. Stemmler, The role of finance in supply chain management, Cost Management in Supply Chains, (2002), 165–176. |
[28] |
A. A. Taleizadeh, N. Pourmohammad-Zia and I. Konstantaras, Partial linked - to - order delayed payment and life time effects on decaying items ordering, Oper. Res., 2019. |
[29] |
A. A. Taleizadeh, D. W. Pentico, M. S. Jabalameli and M. Aryanezhad,
An EOQ model with partial delayed payment and partial backordering, Omega, 41 (2013), 354-368.
doi: 10.1016/j.omega.2012.03.008. |
[30] |
J. Teng and K. Lou,
Seller's optimal credit period and replenishment time in a supply chain with up-stream and down-stream trade credits, J. Global Optim., 53 (2012), 417-430.
doi: 10.1007/s10898-011-9720-3. |
[31] |
P. Ting,
Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the supply chain management, Eur. J. Oper. Res., 246 (2015), 108-118.
doi: 10.1016/j.ejor.2015.04.046. |
[32] |
J. Tirole, The theory of corporate finance, Princeton University Press, United State of America, 2010.
![]() |
[33] |
S. Tiwari, L. E. Cárdenas-barrón, A. A. Shaikh and M. Goh, Retailer ' s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging, Comput. Indust. Engin., 139 (2020). |
[34] |
Y. C. Tsao,
Trade credit and replenishment decisions considering default risk, Comput. Indust. Engin., 117 (2018), 41-46.
doi: 10.1016/j.cie.2018.01.016. |
[35] |
Y. C. Tsao, R. P. F. R. Putri, C. Zhang and V. T. Linh,
Opricing and ordering policies for perishable products under advance - cash - credit payment scheme, J. Indust. Engin. Inter., 15 (2019), 131-146.
|
[36] |
Va ndana and B. K. Sharma,
An EOQ model for retailers partial permissible delay in payment linked to order quantity with shortages,, Mathem. Comput. Simul., 125 (2016), 99-112.
doi: 10.1016/j.matcom.2015.11.008. |
[37] |
W. Wang, J. Teng and K. R. Lou,
Seller's optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime, Eur. J. Oper. Res., 232 (2014), 315-321.
doi: 10.1016/j.ejor.2013.06.027. |
[38] |
N. Wilson and B. Summers,
Trade credit terms offered by small firms?: Survey evidence and empirical analysis, J. Busi. Fin. Account., 29 (2002), 317-351.
|
[39] |
J. Wu, F. Al-khateeb, J. Teng and L. E. Cárdenas-barrón,
Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash- flow analysis, Inter. J. Prod. Eco., 171 (2016), 105-115.
|
[40] |
J. Wu, L. Ouyang, L. E. Cárdenas-barrón and S. K. Goyal,
Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing,, Eur. J. Oper. Res., 237 (2014), 898-908.
doi: 10.1016/j.ejor.2014.03.009. |
show all references
References:
[1] |
A. A. A. Abuhommous,
The impact of offering trade credit on firms' profitability, J. Cor. Account. Fina., 28 (2017), 29-40.
doi: 10.1002/jcaf.22298. |
[2] |
A. A. A. Aggarwal and S. P. Jaggi,
Ordering policies of deteriorating items under permissible delay in payments, J. Opers. Res. Soci., 46 (1995), 658-662.
|
[3] |
D. Atnafu and A. Balda, He impact of inventory management practice on firms' competitiveness and organizational performance: Empirical evidence from micro and small enterprises in ethiopia, Cogent. Busi. Mag., 5 (2018). |
[4] |
Y. Benoist, P. Foulon and F. Labourie,
Flots d'Anosov a distributions stable et instable differentiables, J. Amer. Math. Soc., 5 (1992), 33-74.
doi: 10.2307/2152750. |
[5] |
A. Cambini and L. Martein, Generalized convexity and optimization: Theory and application, Springer-Verlag Berlin Heidelberg, German, (2009), 245. |
[6] |
L. E. Cárdenas-Barrón, A. A. Shaikh, S. Tiwari and G. Trevino-Garza, An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit, Comput. Indust. Engi., 139 (2020). |
[7] |
S. Chen, L. E. Cárdenas-barrón and J. Teng,
Retailer's economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity,, Inter. J. Prod. Eco., 155 (2014), 284-291.
doi: 10.1016/j.ijpe.2013.05.032. |
[8] |
K. Chung, S. Lin and H. M. Srivastava,
The inventory models under conditional trade credit in a supply chain system, Appli. Mathem. Model., 37 (2013), 10036-10052.
doi: 10.1016/j.apm.2013.05.044. |
[9] |
C. Dye, C. Yang and F. Kung,
The inventory models under conditional trade credit in a supply chain system, Appli. Mathem. Model., 37 (2013), 10036-10052.
doi: 10.1016/j.apm.2013.05.044. |
[10] |
P. M. Ghare and G. F. Schrader,
A model for an exponential decaying inventory, J. Indust. Eng., 14 (1963), 238-243.
|
[11] |
S. K. Goyal,
Economic order quantity under conditions of permissible delay in payments, J. Opers. Res. Soci., 36 (1985), 335-338.
|
[12] |
J. Heizer, B. Render and C. Munson, Operations management: Sustainability and supply chain management, Pearson Education Inc, New Jersey, 2016. |
[13] |
Y. Huang,
Economic order quantity under conditionally permissible delay in payment, European Journal of Operational Research, 176 (2007), 911-924.
doi: 10.1016/j.ejor.2005.08.017. |
[14] |
C. K. Jaggi, V. S. S. Yadavalli, A. Sharma and S. Tiwari,
A fuzzy EOQ model with allowable shortage under different trade credit terms, Appli. Mathem.Inform. Sci., 10 (2016), 785-805.
|
[15] |
M. Khouja and A. Mehrez,
Optimal inventory policy under different supplier credit policies, J. Manufact. Sys., 15 (1996), 334-339.
doi: 10.1016/0278-6125(96)84196-3. |
[16] |
R. Li, Y. Chan, C. Chang and L. E. Cárdenas-barrón,
Pricing and lot-sizing policies for perishable products with advance-cash-credit-payments by a discounted cash-flow analysis, Inter. J. Prod. Eco., 193 (2017), 578-598.
|
[17] |
R. Li, K. Skouri, J. Teng and W. Yang,
Seller's optimal replenishment policy and payment term among advance, cash, and credit payments, Inter. J. Prod. Eco., 197 (2018), 35-42.
|
[18] |
R. Li, J. Teng and Y. Zheng,
Optimal credit term, order quantity and selling price for perishable products When demand depends on selling price, expiration date, and credit period, Annals Oper. Res., 280 (2019), 377-405.
doi: 10.1007/s10479-019-03310-2. |
[19] |
W. Luo and K. H. Shang, Technical note - managing inventory for firms with trade credit and deficit penalty, Oper. Res., (2019), 1–11. |
[20] |
P. Mahata, G. C. Mahata and S. K. De, An economic order quantity model under two-level partial trade credit for time varying deteriorating items, J. Sys. Sci. Oper. Logist., (2018), 1–17. |
[21] |
L. Ouyang, J. Teng, S. K. Goyal and C. Yang,
An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity, Eur. J. Oper. Res., 194 (2009), 418-431.
doi: 10.1016/j.ejor.2007.12.018. |
[22] |
B. Sarkar,
An EOQ model with delay in payments and time varying deterioration rate, Mathem. Computer Model., 55 (2012), 367-377.
doi: 10.1016/j.mcm.2011.08.009. |
[23] |
N. H. Shah,
Manufacturer-retailer inventory model for deteriorating items with price-sensitive credit-linked demand under two-level trade credit financing and profit sharing contract, Cogent Engin., 83 (2015), 1-14.
|
[24] |
N. H. Shah,
Retailer's optimal policies for deteriorating items with a fixed lifetime under order-linked conditional trade credit, Uncert. Supp. Chain Manag., 5 (2017), 126-134.
|
[25] |
N. H. Shah, U. Chaudhari and M. Y. Jani,
Optimal policies for time-varying deteriorating item with preservation technology under selling price and trade credit dependent quadratic demand in a supply chain, Inter. J. Appli. Comput. Mathem., 3 (2017), 363-379.
doi: 10.1007/s40819-016-0141-3. |
[26] |
H. Soni, N. H. Shah and C. Jaggi,
Inventory models and trade credit?: A review, Contr. Cyber., 39 (2010), 867-882.
|
[27] |
L. Stemmler, The role of finance in supply chain management, Cost Management in Supply Chains, (2002), 165–176. |
[28] |
A. A. Taleizadeh, N. Pourmohammad-Zia and I. Konstantaras, Partial linked - to - order delayed payment and life time effects on decaying items ordering, Oper. Res., 2019. |
[29] |
A. A. Taleizadeh, D. W. Pentico, M. S. Jabalameli and M. Aryanezhad,
An EOQ model with partial delayed payment and partial backordering, Omega, 41 (2013), 354-368.
doi: 10.1016/j.omega.2012.03.008. |
[30] |
J. Teng and K. Lou,
Seller's optimal credit period and replenishment time in a supply chain with up-stream and down-stream trade credits, J. Global Optim., 53 (2012), 417-430.
doi: 10.1007/s10898-011-9720-3. |
[31] |
P. Ting,
Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the supply chain management, Eur. J. Oper. Res., 246 (2015), 108-118.
doi: 10.1016/j.ejor.2015.04.046. |
[32] |
J. Tirole, The theory of corporate finance, Princeton University Press, United State of America, 2010.
![]() |
[33] |
S. Tiwari, L. E. Cárdenas-barrón, A. A. Shaikh and M. Goh, Retailer ' s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging, Comput. Indust. Engin., 139 (2020). |
[34] |
Y. C. Tsao,
Trade credit and replenishment decisions considering default risk, Comput. Indust. Engin., 117 (2018), 41-46.
doi: 10.1016/j.cie.2018.01.016. |
[35] |
Y. C. Tsao, R. P. F. R. Putri, C. Zhang and V. T. Linh,
Opricing and ordering policies for perishable products under advance - cash - credit payment scheme, J. Indust. Engin. Inter., 15 (2019), 131-146.
|
[36] |
Va ndana and B. K. Sharma,
An EOQ model for retailers partial permissible delay in payment linked to order quantity with shortages,, Mathem. Comput. Simul., 125 (2016), 99-112.
doi: 10.1016/j.matcom.2015.11.008. |
[37] |
W. Wang, J. Teng and K. R. Lou,
Seller's optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime, Eur. J. Oper. Res., 232 (2014), 315-321.
doi: 10.1016/j.ejor.2013.06.027. |
[38] |
N. Wilson and B. Summers,
Trade credit terms offered by small firms?: Survey evidence and empirical analysis, J. Busi. Fin. Account., 29 (2002), 317-351.
|
[39] |
J. Wu, F. Al-khateeb, J. Teng and L. E. Cárdenas-barrón,
Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash- flow analysis, Inter. J. Prod. Eco., 171 (2016), 105-115.
|
[40] |
J. Wu, L. Ouyang, L. E. Cárdenas-barrón and S. K. Goyal,
Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing,, Eur. J. Oper. Res., 237 (2014), 898-908.
doi: 10.1016/j.ejor.2014.03.009. |









Author | Payment Terms | Time value of money | Pers-pective | Decision Variables | Demand Function | Deterio-ration | Credit-risk customer |
Sarkar [22] | FTC | No | Buyer | Cycle Time | Time | Time-varying | No |
Taleizadeh[29] | PTC | No | Buyer | Cycle Time | Rate | No | No |
Huang [13] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | No | No |
Chen [7] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | No | No |
Ting [31] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Constant | No |
Shah [24] | Order Linked of FTC and PTC | No | Buyer | Cycle Time; Selling Price | Selling Price | No | No |
Taleizadeh[28] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Time-varying | No |
Tiwari [33] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Constant | No |
Wang [37] | FTC | No | Seller | Cycle Time; Credit Period | Credit Period | Time-varying | Yes |
Shah [23] | FTC | No | Seller | Cycle Time; Credit Period | Credit Period; Time | No | Yes |
This Research | Order Linked of FTC and PTC | Yes | Seller | Cycle Time; Selling Price; Credit Period | Selling Price; Credit Period | Constant | Yes |
Note: FTC corresponds to full trade credit and PTC corresponds to partial trade credit |
Author | Payment Terms | Time value of money | Pers-pective | Decision Variables | Demand Function | Deterio-ration | Credit-risk customer |
Sarkar [22] | FTC | No | Buyer | Cycle Time | Time | Time-varying | No |
Taleizadeh[29] | PTC | No | Buyer | Cycle Time | Rate | No | No |
Huang [13] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | No | No |
Chen [7] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | No | No |
Ting [31] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Constant | No |
Shah [24] | Order Linked of FTC and PTC | No | Buyer | Cycle Time; Selling Price | Selling Price | No | No |
Taleizadeh[28] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Time-varying | No |
Tiwari [33] | Order Linked of FTC and PTC | No | Buyer | Cycle Time | Rate | Constant | No |
Wang [37] | FTC | No | Seller | Cycle Time; Credit Period | Credit Period | Time-varying | Yes |
Shah [23] | FTC | No | Seller | Cycle Time; Credit Period | Credit Period; Time | No | Yes |
This Research | Order Linked of FTC and PTC | Yes | Seller | Cycle Time; Selling Price; Credit Period | Selling Price; Credit Period | Constant | Yes |
Note: FTC corresponds to full trade credit and PTC corresponds to partial trade credit |
Notation | Description |
Index of case based on demand, |
|
Index of case based on time, |
|
Replenishment cost per order, in dollar | |
Procurement cost per unit, in dollar | |
The inventory holding cost rate per unit per unit time, in dollar | |
Interest earned per dollar per unit time | |
Interest revenue loss due to offering trade credit per dollar per unit time | |
Annual compound interest rate per dollar per unit time | |
Annual demand rate per unit time, as a function of both |
|
The rate of default risk | |
Deterioration rate, |
|
The specific threshold in which permits the full trade credit | |
The fraction of the delay payments is permitted, |
|
Inventory level at time |
|
Seller's order quantity | |
The present value of ordering cost | |
The present value of holding cost | |
The present value of procurement cost | |
The present value of revenue in case i, |
|
The present value of interest earned in case (i, j), |
|
The present value of interest loss in case (i, j), |
|
Length of the replenishment cycle (decision variable) | |
The credit period policies offered by the seller (decision variable) | |
Selling price offered by the seller per unit (decision variable) | |
The present value of total annual profit, which is the function of |
Notation | Description |
Index of case based on demand, |
|
Index of case based on time, |
|
Replenishment cost per order, in dollar | |
Procurement cost per unit, in dollar | |
The inventory holding cost rate per unit per unit time, in dollar | |
Interest earned per dollar per unit time | |
Interest revenue loss due to offering trade credit per dollar per unit time | |
Annual compound interest rate per dollar per unit time | |
Annual demand rate per unit time, as a function of both |
|
The rate of default risk | |
Deterioration rate, |
|
The specific threshold in which permits the full trade credit | |
The fraction of the delay payments is permitted, |
|
Inventory level at time |
|
Seller's order quantity | |
The present value of ordering cost | |
The present value of holding cost | |
The present value of procurement cost | |
The present value of revenue in case i, |
|
The present value of interest earned in case (i, j), |
|
The present value of interest loss in case (i, j), |
|
Length of the replenishment cycle (decision variable) | |
The credit period policies offered by the seller (decision variable) | |
Selling price offered by the seller per unit (decision variable) | |
The present value of total annual profit, which is the function of |
Case (1): |
Case (2): |
Sub-case1.1: |
Sub-case 2.1: |
Sub-case1.2: |
Sub-case 2.2: |
Case (1): |
Case (2): |
Sub-case1.1: |
Sub-case 2.1: |
Sub-case1.2: |
Sub-case 2.2: |
Cases | Demand (items) | ||||
Ordered-link trade credit | 25.3312 | 0.081921 | 0.27852 | 375 | 5482.41 |
No ordered-link trade credit | 26.2325 | 0.25352 | 344 | 5398.24 | |
Full trade credit | 25.505 | 0.054 | 0.27741 | 368 | 5478.92 |
Partial trade credit | 25.7267 | 0.151 | 0.2979 | 372 | 5485.39 |
Cases | Demand (items) | ||||
Ordered-link trade credit | 25.3312 | 0.081921 | 0.27852 | 375 | 5482.41 |
No ordered-link trade credit | 26.2325 | 0.25352 | 344 | 5398.24 | |
Full trade credit | 25.505 | 0.054 | 0.27741 | 368 | 5478.92 |
Partial trade credit | 25.7267 | 0.151 | 0.2979 | 372 | 5485.39 |
Parameter | ||||
D |
25.3312 | 0.0819213 | 0.266878 | 5482.41 |
D |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
c=6 | 23.7634 | 0.260868 | 0.360191 | 7123.23 |
c=8 | 24.6262 | 0.196586 | 0.320289 | 6280.3 |
c=10 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
c=12 | 26.4370 | 0.112410 | 0.28441 | 4761.02 |
c=14 | 27.3616 | 0.081181 | 0.277903 | 4081.91 |
h=0.6 | 25.5873 | 0.177748 | 0.360788 | 5518.11 |
h=0.8 | 25.5501 | 0.161851 | 0.324659 | 5505.19 |
h=1 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
h=1.2 | 25.5012 | 0.139723 | 0.275927 | 5482.67 |
h=1.4 | 25.4845 | 0.131596 | 0.258471 | 5472.62 |
25.5515 | 0.162354 | 0.325811 | 5505.41 | |
25.5359 | 0.155573 | 0.310662 | 5499.3 | |
25.5224 | 0.149572 | 0.297398 | 5493.47 | |
25.5106 | 0.144213 | 0.285662 | 5487.86 | |
25.5002 | 0.139388 | 0.275185 | 5482.47 | |
b=15 | 39.6903 | 0.291871 | 0.409115 | 11962.1 |
b=20 | 30.7678 | 0.198115 | 0.322033 | 7882.19 |
b=25 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
b=30 | 22.0502 | 0.114364 | 0.291447 | 3947.53 |
b=35 | 19.5771 | 0.084373 | 0.29072 | 2882.45 |
l=0.06 | 27.3895 | 0.790391 | 0.771212 | 5638.77 |
l=0.08 | 26.0368 | 0.328971 | 0.397466 | 5537.01 |
l=0.1 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
l=0.12 | 25.2051 | 0.0372622 | 0.268559 | 5476.34 |
l=0.14 | 25.1003 | 6.15627 |
0.266878 | 5475.06 |
Parameter | ||||
D |
25.3312 | 0.0819213 | 0.266878 | 5482.41 |
D |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
c=6 | 23.7634 | 0.260868 | 0.360191 | 7123.23 |
c=8 | 24.6262 | 0.196586 | 0.320289 | 6280.3 |
c=10 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
c=12 | 26.4370 | 0.112410 | 0.28441 | 4761.02 |
c=14 | 27.3616 | 0.081181 | 0.277903 | 4081.91 |
h=0.6 | 25.5873 | 0.177748 | 0.360788 | 5518.11 |
h=0.8 | 25.5501 | 0.161851 | 0.324659 | 5505.19 |
h=1 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
h=1.2 | 25.5012 | 0.139723 | 0.275927 | 5482.67 |
h=1.4 | 25.4845 | 0.131596 | 0.258471 | 5472.62 |
25.5515 | 0.162354 | 0.325811 | 5505.41 | |
25.5359 | 0.155573 | 0.310662 | 5499.3 | |
25.5224 | 0.149572 | 0.297398 | 5493.47 | |
25.5106 | 0.144213 | 0.285662 | 5487.86 | |
25.5002 | 0.139388 | 0.275185 | 5482.47 | |
b=15 | 39.6903 | 0.291871 | 0.409115 | 11962.1 |
b=20 | 30.7678 | 0.198115 | 0.322033 | 7882.19 |
b=25 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
b=30 | 22.0502 | 0.114364 | 0.291447 | 3947.53 |
b=35 | 19.5771 | 0.084373 | 0.29072 | 2882.45 |
l=0.06 | 27.3895 | 0.790391 | 0.771212 | 5638.77 |
l=0.08 | 26.0368 | 0.328971 | 0.397466 | 5537.01 |
l=0.1 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
l=0.12 | 25.2051 | 0.0372622 | 0.268559 | 5476.34 |
l=0.14 | 25.1003 | 6.15627 |
0.266878 | 5475.06 |
Parameter | ||||
26.3120 | 0.427639 | 0.398781 | 5544.5 | |
25.7899 | 0.243915 | 0.329357 | 5510.66 | |
25.5224 | 0.149572 | 0.297398 | 5493.47 | |
25.3619 | 0.092792 | 0.281188 | 5484.03 | |
25.3312 | 0.081921 | 0.27852 | 5482.41 | |
r=0.024 | 25.9844 | 0.307269 | 0.445592 | 5546.65 |
r=0.032 | 25.7022 | 0.211592 | 0.349793 | 5516.32 |
r=0.04 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
r=0.048 | 25.3915 | 0.103826 | 0.264839 | 5475.44 |
r=0.056 | 25.2871 | 0.067011 | 0.242921 | 5460.93 |
I |
25.7848 | 0.242724 | 0.314041 | 5504.49 |
I |
25.6232 | 0.185330 | 0.304028 | 5497.72 |
I |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
I |
25.4539 | 0.125260 | 0.292728 | 5490.55 |
I |
25.4043 | 0.107692 | 0.289277 | 5488.43 |
A=12 | 25.4177 | 0.120489 | 0.232408 | 5523.65 |
A=16 | 25.4741 | 0.136219 | 0.26707 | 5507.64 |
A=20 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
A=24 | 25.5651 | 0.161264 | 0.324661 | 5480.61 |
A=28 | 25.6034 | 0.171715 | 0.349611 | 5468.74 |
n=60 | 25.1003 | 1.57412 |
0.266878 | 5475.06 |
n=80 | 25.1003 | 6.67337 |
0.266878 | 5475.06 |
n=100 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
n=120 | 26.6491 | 0.452890 | 0.489132 | 5575.1 |
n=140 | 29.2678 | 1.039800 | 101428 | 5783.31 |
I |
25.4698 | 0.131901 | 0.258682 | 5472.69 |
I |
25.4934 | 0.139910 | 0.276078 | 5482.71 |
I |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
I |
25.5589 | 0.161542 | 0.324322 | 5505.12 |
I |
25.6065 | 0.176891 | 0.359702 | 5517.93 |
Parameter | ||||
26.3120 | 0.427639 | 0.398781 | 5544.5 | |
25.7899 | 0.243915 | 0.329357 | 5510.66 | |
25.5224 | 0.149572 | 0.297398 | 5493.47 | |
25.3619 | 0.092792 | 0.281188 | 5484.03 | |
25.3312 | 0.081921 | 0.27852 | 5482.41 | |
r=0.024 | 25.9844 | 0.307269 | 0.445592 | 5546.65 |
r=0.032 | 25.7022 | 0.211592 | 0.349793 | 5516.32 |
r=0.04 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
r=0.048 | 25.3915 | 0.103826 | 0.264839 | 5475.44 |
r=0.056 | 25.2871 | 0.067011 | 0.242921 | 5460.93 |
I |
25.7848 | 0.242724 | 0.314041 | 5504.49 |
I |
25.6232 | 0.185330 | 0.304028 | 5497.72 |
I |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
I |
25.4539 | 0.125260 | 0.292728 | 5490.55 |
I |
25.4043 | 0.107692 | 0.289277 | 5488.43 |
A=12 | 25.4177 | 0.120489 | 0.232408 | 5523.65 |
A=16 | 25.4741 | 0.136219 | 0.26707 | 5507.64 |
A=20 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
A=24 | 25.5651 | 0.161264 | 0.324661 | 5480.61 |
A=28 | 25.6034 | 0.171715 | 0.349611 | 5468.74 |
n=60 | 25.1003 | 1.57412 |
0.266878 | 5475.06 |
n=80 | 25.1003 | 6.67337 |
0.266878 | 5475.06 |
n=100 | 25.5224 | 0.149572 | 0.297398 | 5493.47 |
n=120 | 26.6491 | 0.452890 | 0.489132 | 5575.1 |
n=140 | 29.2678 | 1.039800 | 101428 | 5783.31 |
I |
25.4698 | 0.131901 | 0.258682 | 5472.69 |
I |
25.4934 | 0.139910 | 0.276078 | 5482.71 |
I |
25.5224 | 0.149572 | 0.297398 | 5493.47 |
I |
25.5589 | 0.161542 | 0.324322 | 5505.12 |
I |
25.6065 | 0.176891 | 0.359702 | 5517.93 |
[1] |
Shuhua Zhang, Longzhou Cao, Zuliang Lu. An EOQ inventory model for deteriorating items with controllable deterioration rate under stock-dependent demand rate and non-linear holding cost. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021156 |
[2] |
Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091 |
[3] |
Puspita Mahata, Gour Chandra Mahata. Two-echelon trade credit with default risk in an EOQ model for deteriorating items under dynamic demand. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3659-3684. doi: 10.3934/jimo.2020138 |
[4] |
Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012 |
[5] |
Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 45-74. doi: 10.3934/naco.2019032 |
[6] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010 |
[7] |
Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096 |
[8] |
Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175 |
[9] |
Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790 |
[10] |
Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial and Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069 |
[11] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial and Management Optimization, 2022, 18 (2) : 897-932. doi: 10.3934/jimo.2021002 |
[12] |
Subhendu Ruidas, Mijanur Rahaman Seikh, Prasun Kumar Nayak. A production inventory model for high-tech products involving two production runs and a product variation. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022038 |
[13] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098 |
[14] |
Sudip Adak, G. S. Mahapatra. Effect of reliability on varying demand and holding cost on inventory system incorporating probabilistic deterioration. Journal of Industrial and Management Optimization, 2022, 18 (1) : 173-193. doi: 10.3934/jimo.2020148 |
[15] |
Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial and Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040 |
[16] |
Yukang He, Zhengwen He, Nengmin Wang. Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2451-2474. doi: 10.3934/jimo.2020077 |
[17] |
Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial and Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945 |
[18] |
Fuying Jing, Zirui Lan, Yang Pan. Forecast horizon of dynamic lot size model for perishable inventory with minimum order quantities. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1435-1456. doi: 10.3934/jimo.2019010 |
[19] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060 |
[20] |
Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics and Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]