In 2011, Kilmer and Martin proposed tensor singular value decomposition (T-SVD) for third order tensors. Since then, T-SVD has applications in low rank tensor approximation, tensor recovery, multi-view clustering, multi-view feature extraction, tensor sketching, etc. By going through the Discrete Fourier Transform (DFT), matrix SVD and inverse DFT, a third order tensor is mapped to an f-diagonal third order tensor. We call this a Kilmer-Martin mapping. We show that the Kilmer-Martin mapping of a third order tensor is invariant if that third order tensor is taking T-product with some orthogonal tensors. We define singular values and T-rank of that third order tensor based upon its Kilmer-Martin mapping. Thus, tensor tubal rank, T-rank, singular values and T-singular values of a third order tensor are invariant when it is taking T-product with some orthogonal tensors. Some properties of singular values, T-rank and best T-rank one approximation are discussed.
Citation: |
[1] | Y. Chen, X. Xiao and Y. Zhou, Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix, Pattern Recognition, 106 (2020), 107441. |
[2] | G. H. Golub and C. F. Van Loan, Matrix Computation, 4$^{nd}$ edition, Johns Hopkins University Press, Baltimore, MD, 2013. |
[3] | M. Kilmer, K. Braman, N. Hao and R. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), 148-172. doi: 10.1137/110837711. |
[4] | M. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appl., 435 (2011), 641-658. doi: 10.1016/j.laa.2010.09.020. |
[5] | M. Kilmer, C. D. Martin and L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report Tufts University, Computer Science Department, 2008. |
[6] | C. Ling, H. He, C. Pan and L. Qi, A T-Sketching Method for Low-Rank Approximation of Third Order Tensors, Manuscript, 2021. |
[7] | C. Ling, G. Yu, L. Qi and Y. Xu, A parallelizable optimization method for missing internet traffic tensor data, arXiv: 2005.09838, 2020. |
[8] | Y. Miao, L. Qi and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra Appl., 590 (2020), 258-303. doi: 10.1016/j.laa.2019.12.035. |
[9] | Y. Miao, L. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Commun. Appl. Math. Comput., 3 (2021), 201-220. doi: 10.1007/s42967-019-00055-4. |
[10] | L. Qi and G. Yu, T-singular values and T-Sketching for third order tensors, arXiv: 2103.00976, 2021. |
[11] | O. Semerci, N. Hao, M. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693. doi: 10.1109/TIP.2014.2305840. |
[12] | G. Song, M. K. Ng and X. Zhang, Robust tensor completion using transformed tensor singular value decomposition, Numer. Linear Algebra Appl., 27 (2020), e2299. doi: 10.1002/nla.2299. |
[13] | X. Xiao, Y. Chen, Y. J. Gong and Y. Zhou, Low-rank reserving t-linear projection for robust image feature extraction, IEEE Trans. Image Process., 30 (2021), 108-120. doi: 10.1109/TIP.2020.3031813. |
[14] | X. Xiao, Y. Chen, Y. J. Gong and Y. Zhou, Prior knowledge regularized multiview self-representation and its applications, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1325-1338. doi: 10.1109/TNNLS.2020.2984625. |
[15] | L. Yang, Z. H. Huang, S. Hu and J. Han, An iterative algorithm for third-order tensor multi-rank minimization, Comput. Optim. Appl., 63 (2016), 169-202. doi: 10.1007/s10589-015-9769-x. |
[16] | J. Zhang, A. K. Saibaba, M. E. Kilmer and S. Aeron, A randomized tensor singular value decomposition based on the t-product, Numer. Linear Algebra Appl., 25 (2018), e2179. doi: 10.1002/nla.2179. |
[17] | Z. Zhang and S. Aeron, Exact tensor completion using t-SVD, IEEE Tran. Signal Process., 65 (2017), 1511-1526. doi: 10.1109/TSP.2016.2639466. |
[18] | Z. Zhang, G. Ely, S. Aeron, N. Hao and M. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849. doi: 10.1109/CVPR.2014.485. |
[19] | M. Zheng, Z. Huang and Y. Wang, T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming, Comput. Optim. Appl, 78 (2021), 239-272. doi: 10.1007/s10589-020-00231-w. |
[20] | P. Zhou, C. Lu, Z. Lin and C. Zhang, Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27 (2018), 1152-1163. doi: 10.1109/TIP.2017.2762595. |