• Previous Article
    An efficient iterative method for solving split variational inclusion problem with applications
  • JIMO Home
  • This Issue
  • Next Article
    The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy
doi: 10.3934/jimo.2021154
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An orthogonal equivalence theorem for third order tensors

1. 

Department of Mathematics, Hangzhou Dianzi University, Hangzhou, 310018, China

2. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China

3. 

School of Computer Science and Technology, Dongguan University of Technology, Dongguan, 523000, China

* Corresponding author: Jinjie Liu

Received  March 2021 Revised  June 2021 Early access September 2021

Fund Project: The second author's work was supported by Natural Science Foundation of China (No. 11971138) and Natural Science Foundation of Zhejiang Province (No. LY19A010019, LD19A010002). The third author's work was supported by Natural Science Foundation of China (No. 11801479, No. 12001366). The forth author's work was supported by Natural Science Foundation of China (No.11971106) and Guangdong Universities' Special Projects in Key Fields of Natural Science (No. 2019KZDZX1005)

In 2011, Kilmer and Martin proposed tensor singular value decomposition (T-SVD) for third order tensors. Since then, T-SVD has applications in low rank tensor approximation, tensor recovery, multi-view clustering, multi-view feature extraction, tensor sketching, etc. By going through the Discrete Fourier Transform (DFT), matrix SVD and inverse DFT, a third order tensor is mapped to an f-diagonal third order tensor. We call this a Kilmer-Martin mapping. We show that the Kilmer-Martin mapping of a third order tensor is invariant if that third order tensor is taking T-product with some orthogonal tensors. We define singular values and T-rank of that third order tensor based upon its Kilmer-Martin mapping. Thus, tensor tubal rank, T-rank, singular values and T-singular values of a third order tensor are invariant when it is taking T-product with some orthogonal tensors. Some properties of singular values, T-rank and best T-rank one approximation are discussed.

Citation: Liqun Qi, Chen Ling, Jinjie Liu, Chen Ouyang. An orthogonal equivalence theorem for third order tensors. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021154
References:
[1]

Y. ChenX. Xiao and Y. Zhou, Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix, Pattern Recognition, 106 (2020), 107441.   Google Scholar

[2]

G. H. Golub and C. F. Van Loan, Matrix Computation, 4$^{nd}$ edition, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[3]

M. KilmerK. BramanN. Hao and R. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), 148-172.  doi: 10.1137/110837711.  Google Scholar

[4]

M. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appl., 435 (2011), 641-658.  doi: 10.1016/j.laa.2010.09.020.  Google Scholar

[5]

M. Kilmer, C. D. Martin and L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report Tufts University, Computer Science Department, 2008. Google Scholar

[6]

C. Ling, H. He, C. Pan and L. Qi, A T-Sketching Method for Low-Rank Approximation of Third Order Tensors, Manuscript, 2021. Google Scholar

[7]

C. Ling, G. Yu, L. Qi and Y. Xu, A parallelizable optimization method for missing internet traffic tensor data, arXiv: 2005.09838, 2020. Google Scholar

[8]

Y. MiaoL. Qi and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra Appl., 590 (2020), 258-303.  doi: 10.1016/j.laa.2019.12.035.  Google Scholar

[9]

Y. MiaoL. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Commun. Appl. Math. Comput., 3 (2021), 201-220.  doi: 10.1007/s42967-019-00055-4.  Google Scholar

[10]

L. Qi and G. Yu, T-singular values and T-Sketching for third order tensors, arXiv: 2103.00976, 2021. Google Scholar

[11]

O. SemerciN. HaoM. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.  doi: 10.1109/TIP.2014.2305840.  Google Scholar

[12]

G. Song, M. K. Ng and X. Zhang, Robust tensor completion using transformed tensor singular value decomposition, Numer. Linear Algebra Appl., 27 (2020), e2299. doi: 10.1002/nla.2299.  Google Scholar

[13]

X. XiaoY. ChenY. J. Gong and Y. Zhou, Low-rank reserving t-linear projection for robust image feature extraction, IEEE Trans. Image Process., 30 (2021), 108-120.  doi: 10.1109/TIP.2020.3031813.  Google Scholar

[14]

X. XiaoY. ChenY. J. Gong and Y. Zhou, Prior knowledge regularized multiview self-representation and its applications, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1325-1338.  doi: 10.1109/TNNLS.2020.2984625.  Google Scholar

[15]

L. YangZ. H. HuangS. Hu and J. Han, An iterative algorithm for third-order tensor multi-rank minimization, Comput. Optim. Appl., 63 (2016), 169-202.  doi: 10.1007/s10589-015-9769-x.  Google Scholar

[16]

J. Zhang, A. K. Saibaba, M. E. Kilmer and S. Aeron, A randomized tensor singular value decomposition based on the t-product, Numer. Linear Algebra Appl., 25 (2018), e2179. doi: 10.1002/nla.2179.  Google Scholar

[17]

Z. Zhang and S. Aeron, Exact tensor completion using t-SVD, IEEE Tran. Signal Process., 65 (2017), 1511-1526.  doi: 10.1109/TSP.2016.2639466.  Google Scholar

[18]

Z. Zhang, G. Ely, S. Aeron, N. Hao and M. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849. doi: 10.1109/CVPR.2014.485.  Google Scholar

[19]

M. ZhengZ. Huang and Y. Wang, T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming, Comput. Optim. Appl, 78 (2021), 239-272.  doi: 10.1007/s10589-020-00231-w.  Google Scholar

[20]

P. ZhouC. LuZ. Lin and C. Zhang, Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27 (2018), 1152-1163.  doi: 10.1109/TIP.2017.2762595.  Google Scholar

show all references

References:
[1]

Y. ChenX. Xiao and Y. Zhou, Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix, Pattern Recognition, 106 (2020), 107441.   Google Scholar

[2]

G. H. Golub and C. F. Van Loan, Matrix Computation, 4$^{nd}$ edition, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[3]

M. KilmerK. BramanN. Hao and R. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), 148-172.  doi: 10.1137/110837711.  Google Scholar

[4]

M. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appl., 435 (2011), 641-658.  doi: 10.1016/j.laa.2010.09.020.  Google Scholar

[5]

M. Kilmer, C. D. Martin and L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report Tufts University, Computer Science Department, 2008. Google Scholar

[6]

C. Ling, H. He, C. Pan and L. Qi, A T-Sketching Method for Low-Rank Approximation of Third Order Tensors, Manuscript, 2021. Google Scholar

[7]

C. Ling, G. Yu, L. Qi and Y. Xu, A parallelizable optimization method for missing internet traffic tensor data, arXiv: 2005.09838, 2020. Google Scholar

[8]

Y. MiaoL. Qi and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra Appl., 590 (2020), 258-303.  doi: 10.1016/j.laa.2019.12.035.  Google Scholar

[9]

Y. MiaoL. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Commun. Appl. Math. Comput., 3 (2021), 201-220.  doi: 10.1007/s42967-019-00055-4.  Google Scholar

[10]

L. Qi and G. Yu, T-singular values and T-Sketching for third order tensors, arXiv: 2103.00976, 2021. Google Scholar

[11]

O. SemerciN. HaoM. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.  doi: 10.1109/TIP.2014.2305840.  Google Scholar

[12]

G. Song, M. K. Ng and X. Zhang, Robust tensor completion using transformed tensor singular value decomposition, Numer. Linear Algebra Appl., 27 (2020), e2299. doi: 10.1002/nla.2299.  Google Scholar

[13]

X. XiaoY. ChenY. J. Gong and Y. Zhou, Low-rank reserving t-linear projection for robust image feature extraction, IEEE Trans. Image Process., 30 (2021), 108-120.  doi: 10.1109/TIP.2020.3031813.  Google Scholar

[14]

X. XiaoY. ChenY. J. Gong and Y. Zhou, Prior knowledge regularized multiview self-representation and its applications, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1325-1338.  doi: 10.1109/TNNLS.2020.2984625.  Google Scholar

[15]

L. YangZ. H. HuangS. Hu and J. Han, An iterative algorithm for third-order tensor multi-rank minimization, Comput. Optim. Appl., 63 (2016), 169-202.  doi: 10.1007/s10589-015-9769-x.  Google Scholar

[16]

J. Zhang, A. K. Saibaba, M. E. Kilmer and S. Aeron, A randomized tensor singular value decomposition based on the t-product, Numer. Linear Algebra Appl., 25 (2018), e2179. doi: 10.1002/nla.2179.  Google Scholar

[17]

Z. Zhang and S. Aeron, Exact tensor completion using t-SVD, IEEE Tran. Signal Process., 65 (2017), 1511-1526.  doi: 10.1109/TSP.2016.2639466.  Google Scholar

[18]

Z. Zhang, G. Ely, S. Aeron, N. Hao and M. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849. doi: 10.1109/CVPR.2014.485.  Google Scholar

[19]

M. ZhengZ. Huang and Y. Wang, T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming, Comput. Optim. Appl, 78 (2021), 239-272.  doi: 10.1007/s10589-020-00231-w.  Google Scholar

[20]

P. ZhouC. LuZ. Lin and C. Zhang, Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27 (2018), 1152-1163.  doi: 10.1109/TIP.2017.2762595.  Google Scholar

[1]

William Ott, Qiudong Wang. Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1035-1054. doi: 10.3934/dcds.2010.26.1035

[2]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[3]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[4]

Dieter Armbruster, Simone Göttlich, Stephan Knapp. Continuous approximation of $ M_t/M_t/ 1 $ distributions with application to production. Journal of Computational Dynamics, 2020, 7 (2) : 243-269. doi: 10.3934/jcd.2020010

[5]

Florian Bossmann, Jianwei Ma. Enhanced image approximation using shifted rank-1 reconstruction. Inverse Problems & Imaging, 2020, 14 (2) : 267-290. doi: 10.3934/ipi.2020012

[6]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

[7]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[8]

Ming Yang, Dunren Che, Wen Liu, Zhao Kang, Chong Peng, Mingqing Xiao, Qiang Cheng. On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$. Big Data & Information Analytics, 2016, 1 (4) : 391-401. doi: 10.3934/bdia.2016017

[9]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[10]

John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89

[11]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[12]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[13]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[14]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[15]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[16]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[17]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[18]

Gabriele Link. Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5577-5613. doi: 10.3934/dcds.2018245

[19]

Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021143

[20]

Changguang Dong, Adam Kanigowski. Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $. Journal of Modern Dynamics, 2020, 16: 37-57. doi: 10.3934/jmd.2020002

2020 Impact Factor: 1.801

Article outline

[Back to Top]