doi: 10.3934/jimo.2021162
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Properties and calculation for C-eigenvalues of a piezoelectric-type tensor

College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, China

* Corresponding author: Jianxing Zhao

Received  March 2021 Revised  June 2021 Early access September 2021

This paper mainly considers the C-eigenvalues of a piezoelectric-type tensor. For this, we first discuss its relationship with $ l^{k, s} $-singular values of a partially symmetric rectangular tensor, and then present three types of C-eigenvalue inclusion intervals which can be used to locate all C-eigenvalues of a piezoelectric-type tensor and can provide an upper and a lower bound for the largest C-eigenvalue of a piezoelectric-type tensor. Finally, we present an alternative method to compute all C-eigenpairs of a piezoelectric-type tensor.

Citation: Jianxing Zhao, Jincheng Luo. Properties and calculation for C-eigenvalues of a piezoelectric-type tensor. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021162
References:
[1]

L. V. Ahlfors, Complex Analysis, 2nd edn, McGraw-Hill, New York, 1966.  Google Scholar

[2]

K. ChangL. Qi and G. Zhou, Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

H. CheH. Chen and Y. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89 (2019), 41-49.  doi: 10.1016/j.aml.2018.09.014.  Google Scholar

[4]

Y. Chen, A. Jákli and L. Qi, Spectral analysis of piezoelectric tensors, preprint, arXiv: 1703.07937v1. Google Scholar

[5]

Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20 pp. doi: 10.1088/1751-8121/aa98a8.  Google Scholar

[6]

Z. ChenL. QiQ. Yang and Y. Yang, The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis, Linear Algebra Appl., 439 (2013), 3713-3733.  doi: 10.1016/j.laa.2013.09.027.  Google Scholar

[7]

J. Curie and P. Curie, Développement, par compression de l'électricité polaire dans les cristaux hémiédres à faces inclinées, Bulletin de Minéralogie, 3-4 (1880), 90-93.  doi: 10.3406/bulmi.1880.1564.  Google Scholar

[8]

G. DahlJ. M. LeinaasJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[9]

M. De JongW. ChenH. GeerlingsM. Asta and K. A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data, 2 (2015), 150053.  doi: 10.1038/sdata.2015.53.  Google Scholar

[10]

W. DingZ. Hou and Y. Wei, Tensor logarithmic norm and its applications, Numer. Linear Algebra Appl., 23 (2016), 989-1006.  doi: 10.1002/nla.2064.  Google Scholar

[11]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys Rev., 47 (1935), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[12]

G. H. Golub and C. F. Van Loan, Matrix Computations (4th edn), Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press: Baltimore, MD, 2013.  Google Scholar

[13]

J. He, Y. Liu, G. Xu and G. Liu, V-singular values of rectangular tensors and their applications, J. Inequal. Appl., 2019 (2019), Paper No. 84, 15 pp. doi: 10.1186/s13660-019-2036-4.  Google Scholar

[14]

A. Kholkin, N. Pertsev and A. Goltsev, Piezolelectricity and Crystal Symmetry, Piezoelectric and Acoustic Materials, Springer, New York, 2008. Google Scholar

[15]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elast., 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[16]

C. LiY. Liu and Y. Li, C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358 (2019), 244-250.  doi: 10.1016/j.amc.2019.04.036.  Google Scholar

[17]

S. Li, Z. Chen, C. Li and J. Zhao, Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices, Comput. Appl. Math., 39 (2020), Paper No. 217, 14 pp. doi: 10.1007/s40314-020-01245-0.  Google Scholar

[18]

W. LiR. KeW.-K. Ching and M. K. Ng, A $C$-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains, Comput. Math. Appl., 78 (2019), 1008-1025.  doi: 10.1016/j.camwa.2019.03.016.  Google Scholar

[19]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, (2005), 129-132. Google Scholar

[20]

C. Ling and L. Qi, lk, s-Singular values and spectral radius of rectangular tensors, Front. Math. China, 8 (2013), 63-83.  doi: 10.1007/s11464-012-0265-7.  Google Scholar

[21]

X. Liu, S. Yin and H. Li, C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices, J. Ind. Manag. Optim., (2020). doi: 10.3934/jimo.2020122.  Google Scholar

[22]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[23]

L. Qi, Transposes, L-eigenvalues and invariants of third order tensors, preprint, (2017), arXiv: 1704.01327. Google Scholar

[24]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[25]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[26]

C. Sang, An S-type singular value inclusion set for rectangular tensors, J. Inequal. Appl., 2017 (2017), Paper No. 141, 14 pp. doi: 10.1186/s13660-017-1421-0.  Google Scholar

[27]

L. SunG. Wang and L. Liu, Further study on Z-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.  doi: 10.1007/s40840-020-00939-2.  Google Scholar

[28]

W. WangH. Chen and Y. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, Appl. Math. Lett., 100 (2020), 106035.  doi: 10.1016/j.aml.2019.106035.  Google Scholar

[29]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J Elast., 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[30]

L. Xiong and J. Liu, A new C-eigenvalue localisation set for piezoelectric-type tensors, E. Asian J. Appl. Math., 10 (2020), 123-134.  doi: 10.4208/eajam.060119.040619.  Google Scholar

[31]

Y. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[32]

H. YaoB. LongC. Bu and J. Zhou, lk, s-Singular values and spectral radius of partially symmetric rectangular tensors, Front. Math. China, 11 (2016), 605-622.  doi: 10.1007/s11464-015-0494-7.  Google Scholar

[33]

J. Zhao, Two new singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 67 (2019), 2451-2470.  doi: 10.1080/03081087.2018.1494125.  Google Scholar

[34]

J. Zhao and C. Li, Singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 66 (2018), 1333-1350.  doi: 10.1080/03081087.2017.1351518.  Google Scholar

[35]

W.-N. ZouC.-X. Tang and E. Pan, Symmetry types of the piezoelectric tensor and their identification, Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 469 (2013), 20120755.  doi: 10.1098/rspa.2012.0755.  Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis, 2nd edn, McGraw-Hill, New York, 1966.  Google Scholar

[2]

K. ChangL. Qi and G. Zhou, Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

H. CheH. Chen and Y. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89 (2019), 41-49.  doi: 10.1016/j.aml.2018.09.014.  Google Scholar

[4]

Y. Chen, A. Jákli and L. Qi, Spectral analysis of piezoelectric tensors, preprint, arXiv: 1703.07937v1. Google Scholar

[5]

Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20 pp. doi: 10.1088/1751-8121/aa98a8.  Google Scholar

[6]

Z. ChenL. QiQ. Yang and Y. Yang, The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis, Linear Algebra Appl., 439 (2013), 3713-3733.  doi: 10.1016/j.laa.2013.09.027.  Google Scholar

[7]

J. Curie and P. Curie, Développement, par compression de l'électricité polaire dans les cristaux hémiédres à faces inclinées, Bulletin de Minéralogie, 3-4 (1880), 90-93.  doi: 10.3406/bulmi.1880.1564.  Google Scholar

[8]

G. DahlJ. M. LeinaasJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[9]

M. De JongW. ChenH. GeerlingsM. Asta and K. A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data, 2 (2015), 150053.  doi: 10.1038/sdata.2015.53.  Google Scholar

[10]

W. DingZ. Hou and Y. Wei, Tensor logarithmic norm and its applications, Numer. Linear Algebra Appl., 23 (2016), 989-1006.  doi: 10.1002/nla.2064.  Google Scholar

[11]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys Rev., 47 (1935), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[12]

G. H. Golub and C. F. Van Loan, Matrix Computations (4th edn), Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press: Baltimore, MD, 2013.  Google Scholar

[13]

J. He, Y. Liu, G. Xu and G. Liu, V-singular values of rectangular tensors and their applications, J. Inequal. Appl., 2019 (2019), Paper No. 84, 15 pp. doi: 10.1186/s13660-019-2036-4.  Google Scholar

[14]

A. Kholkin, N. Pertsev and A. Goltsev, Piezolelectricity and Crystal Symmetry, Piezoelectric and Acoustic Materials, Springer, New York, 2008. Google Scholar

[15]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elast., 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[16]

C. LiY. Liu and Y. Li, C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358 (2019), 244-250.  doi: 10.1016/j.amc.2019.04.036.  Google Scholar

[17]

S. Li, Z. Chen, C. Li and J. Zhao, Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices, Comput. Appl. Math., 39 (2020), Paper No. 217, 14 pp. doi: 10.1007/s40314-020-01245-0.  Google Scholar

[18]

W. LiR. KeW.-K. Ching and M. K. Ng, A $C$-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains, Comput. Math. Appl., 78 (2019), 1008-1025.  doi: 10.1016/j.camwa.2019.03.016.  Google Scholar

[19]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, (2005), 129-132. Google Scholar

[20]

C. Ling and L. Qi, lk, s-Singular values and spectral radius of rectangular tensors, Front. Math. China, 8 (2013), 63-83.  doi: 10.1007/s11464-012-0265-7.  Google Scholar

[21]

X. Liu, S. Yin and H. Li, C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices, J. Ind. Manag. Optim., (2020). doi: 10.3934/jimo.2020122.  Google Scholar

[22]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[23]

L. Qi, Transposes, L-eigenvalues and invariants of third order tensors, preprint, (2017), arXiv: 1704.01327. Google Scholar

[24]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[25]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[26]

C. Sang, An S-type singular value inclusion set for rectangular tensors, J. Inequal. Appl., 2017 (2017), Paper No. 141, 14 pp. doi: 10.1186/s13660-017-1421-0.  Google Scholar

[27]

L. SunG. Wang and L. Liu, Further study on Z-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105-129.  doi: 10.1007/s40840-020-00939-2.  Google Scholar

[28]

W. WangH. Chen and Y. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, Appl. Math. Lett., 100 (2020), 106035.  doi: 10.1016/j.aml.2019.106035.  Google Scholar

[29]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J Elast., 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[30]

L. Xiong and J. Liu, A new C-eigenvalue localisation set for piezoelectric-type tensors, E. Asian J. Appl. Math., 10 (2020), 123-134.  doi: 10.4208/eajam.060119.040619.  Google Scholar

[31]

Y. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[32]

H. YaoB. LongC. Bu and J. Zhou, lk, s-Singular values and spectral radius of partially symmetric rectangular tensors, Front. Math. China, 11 (2016), 605-622.  doi: 10.1007/s11464-015-0494-7.  Google Scholar

[33]

J. Zhao, Two new singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 67 (2019), 2451-2470.  doi: 10.1080/03081087.2018.1494125.  Google Scholar

[34]

J. Zhao and C. Li, Singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 66 (2018), 1333-1350.  doi: 10.1080/03081087.2017.1351518.  Google Scholar

[35]

W.-N. ZouC.-X. Tang and E. Pan, Symmetry types of the piezoelectric tensor and their identification, Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 469 (2013), 20120755.  doi: 10.1098/rspa.2012.0755.  Google Scholar

Table 1.  Numerical comparison among $\varrho$, $\varrho_{\min}$, $\tilde{\varrho}_{\min}$, $\rho_{\Gamma}$, $\rho_{\mathcal{L}}$, $\rho_{\mathcal{M}}$, $\rho_{\Upsilon}$, $\rho_{\gamma}$, $\rho_C$, $\rho_G$, $\rho_B$, $\rho_{\min}$ and $\lambda^*$.
$\mathcal{A}_{\rm{VFeSb}}$ $\mathcal{A}_{\rm SiO_2}$ $\mathcal{A}_{\rm Cr_2AgBiO_8}$ $\mathcal{A}_{\rm RbTaO_3}$ $\mathcal{A}_{\rm NaBiS_2}$ $\mathcal{A}_{\rm LiBiB_2O_5}$ $\mathcal{A}_{\rm KBi_2F_7}$ $\mathcal{A}_{\rm BaNiO_3}$
$\varrho$ 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
$\varrho_{\min}$ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$\tilde{\varrho}_{\min}$ 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
$\rho_{\Gamma}$ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$\rho_\mathcal{L}$ 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
$\rho_\mathcal{M}$ 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
$\rho_{\Upsilon}$ 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
$\rho_{\gamma}$ 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
$\rho_C$ 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
$\rho_G$ 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
$\rho_B$ 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
$\rho_{\min}$ 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
$\lambda^*$ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628
$\mathcal{A}_{\rm{VFeSb}}$ $\mathcal{A}_{\rm SiO_2}$ $\mathcal{A}_{\rm Cr_2AgBiO_8}$ $\mathcal{A}_{\rm RbTaO_3}$ $\mathcal{A}_{\rm NaBiS_2}$ $\mathcal{A}_{\rm LiBiB_2O_5}$ $\mathcal{A}_{\rm KBi_2F_7}$ $\mathcal{A}_{\rm BaNiO_3}$
$\varrho$ 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
$\varrho_{\min}$ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$\tilde{\varrho}_{\min}$ 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
$\rho_{\Gamma}$ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$\rho_\mathcal{L}$ 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
$\rho_\mathcal{M}$ 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
$\rho_{\Upsilon}$ 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
$\rho_{\gamma}$ 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
$\rho_C$ 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
$\rho_G$ 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
$\rho_B$ 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
$\rho_{\min}$ 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
$\lambda^*$ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628
Table 2.  Z-eigenvalues $ \lambda_z $ and their parts of Z-eigenvectors $ z = (z_1, \ldots, z_6)^\top $ of $ \mathcal{C}_{\mathcal{A}_{\rm{VFeSb}}} $.
$ \lambda_z $ $ z_1 $ $ z_2 $ $ z_3 $ $ z_4 $ $ z_5 $ $ z_6 $
$ -3.0062 $ 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
$ -2.6034 $ 0.7071 0 0 0 0.5000 0.5000
0 0.0077 0 0 1.0000 0 0
2.6034 $ -0.7071 $ 0 0 0 $ -0.5000 $ $ -0.5000 $
3.0062 $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $
$ \lambda_z $ $ z_1 $ $ z_2 $ $ z_3 $ $ z_4 $ $ z_5 $ $ z_6 $
$ -3.0062 $ 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
$ -2.6034 $ 0.7071 0 0 0 0.5000 0.5000
0 0.0077 0 0 1.0000 0 0
2.6034 $ -0.7071 $ 0 0 0 $ -0.5000 $ $ -0.5000 $
3.0062 $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $ $ -0.4082 $
Table 3.  All C-eigenvalues $ \lambda $ and their parts of C-eigenvectors pairs $ (x, y) $ of $ \mathcal{A} $.
$ \lambda $ $ x_1 $ $ x_2 $ $ x_3 $ $ y_1 $ $ y_2 $ $ y_3 $
$ -4.2514 $ 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
$ -3.6818 $ 1.0000 0 0 0 0.7071 0.7071
0 1.0000 0 0 1.0000 0 0
3.6818 $ -1.0000 $ 0 0 0 $ -0.7071 $ $ -0.7071 $
4.2514 $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $
$ \lambda $ $ x_1 $ $ x_2 $ $ x_3 $ $ y_1 $ $ y_2 $ $ y_3 $
$ -4.2514 $ 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
$ -3.6818 $ 1.0000 0 0 0 0.7071 0.7071
0 1.0000 0 0 1.0000 0 0
3.6818 $ -1.0000 $ 0 0 0 $ -0.7071 $ $ -0.7071 $
4.2514 $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $ $ -0.5774 $
Table 4.  Z-eigenvalues $ \lambda_z $ and their parts of Z-eigenvectors $ z = (z_1, \ldots, z_6)^\top $ of $ \mathcal{C}_{\mathcal{A}} $.
$ \lambda_z $ $ z_1 $ $ z_2 $ $ z_3 $ $ z_4 $ $ z_5 $ $ z_6 $
$ -12.7279 $ 0 0 $ -0.7071 $ 0 0 0.7071
$ -7.8102 $ $ -0.2561 $ $ -0.3201 $ $ -0.5762 $ 0.5000 0.5000 0
$ -5.0000 $ 0.4000 0.5000 $ -0.3000 $ $ -0.5000 $ 0.5000 0
$ -3.8419 $ 0.1874 0.2343 $ -0.6403 $ $ -0.6952 $ 0.1295 0
0 1.0000 $ -0.0037 $ 0.0000 0 0 0
3.8419 $ -0.1874 $ $ -0.2343 $ 0.6403 0.6952 $ -0.1295 $ 0
5.0000 $ -0.4000 $ $ -0.5000 $ 0.3000 0.5000 $ -0.5000 $ 0
7.8102 0.2561 0.3201 0.5762 0.5000 0.5000 0
12.7279 0 0 0.7071 0 0 0.7071
$ \lambda_z $ $ z_1 $ $ z_2 $ $ z_3 $ $ z_4 $ $ z_5 $ $ z_6 $
$ -12.7279 $ 0 0 $ -0.7071 $ 0 0 0.7071
$ -7.8102 $ $ -0.2561 $ $ -0.3201 $ $ -0.5762 $ 0.5000 0.5000 0
$ -5.0000 $ 0.4000 0.5000 $ -0.3000 $ $ -0.5000 $ 0.5000 0
$ -3.8419 $ 0.1874 0.2343 $ -0.6403 $ $ -0.6952 $ 0.1295 0
0 1.0000 $ -0.0037 $ 0.0000 0 0 0
3.8419 $ -0.1874 $ $ -0.2343 $ 0.6403 0.6952 $ -0.1295 $ 0
5.0000 $ -0.4000 $ $ -0.5000 $ 0.3000 0.5000 $ -0.5000 $ 0
7.8102 0.2561 0.3201 0.5762 0.5000 0.5000 0
12.7279 0 0 0.7071 0 0 0.7071
Table 5.  All C-eigenvalues $ \lambda $ and their parts of C-eigenvectors pairs $ (x, y) $ of $ \mathcal{A} $.
$ \lambda $ $ x_1 $ $ x_2 $ $ x_3 $ $ y_1 $ $ y_2 $ $ y_3 $
$ -18.0000 $ 0 0 $ -1.0000 $ 0 0 1.0000
$ -11.0454 $ $ -0.3621 $ $ -0.4527 $ $ -0.8148 $ 0.7071 0.7071 0
$ -7.0711 $ 0.5657 0.7071 $ -0.4243 $ $ -0.7071 $ 0.7071 0
$ -5.4332 $ 0.2650 0.3313 $ -0.9055 $ $ -0.9831 $ 0.1831 0
5.4332 $ -0.2650 $ $ -0.3313 $ 0.9055 0.9831 $ -0.1831 $ 0
7.0711 $ -0.5657 $ $ -0.7071 $ 0.4243 0.7071 $ -0.7071 $ 0
11.0454 0.3621 0.4527 0.8148 0.7071 0.7071 0
18.0000 0 0 1.0000 0 0 1.0000
$ \lambda $ $ x_1 $ $ x_2 $ $ x_3 $ $ y_1 $ $ y_2 $ $ y_3 $
$ -18.0000 $ 0 0 $ -1.0000 $ 0 0 1.0000
$ -11.0454 $ $ -0.3621 $ $ -0.4527 $ $ -0.8148 $ 0.7071 0.7071 0
$ -7.0711 $ 0.5657 0.7071 $ -0.4243 $ $ -0.7071 $ 0.7071 0
$ -5.4332 $ 0.2650 0.3313 $ -0.9055 $ $ -0.9831 $ 0.1831 0
5.4332 $ -0.2650 $ $ -0.3313 $ 0.9055 0.9831 $ -0.1831 $ 0
7.0711 $ -0.5657 $ $ -0.7071 $ 0.4243 0.7071 $ -0.7071 $ 0
11.0454 0.3621 0.4527 0.8148 0.7071 0.7071 0
18.0000 0 0 1.0000 0 0 1.0000
[1]

Xifu Liu, Shuheng Yin, Hanyu Li. C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3349-3356. doi: 10.3934/jimo.2020122

[2]

Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial & Management Optimization, 2020, 16 (2) : 911-918. doi: 10.3934/jimo.2018184

[3]

Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012

[4]

Yannan Chen, Jingya Chang. A trust region algorithm for computing extreme eigenvalues of tensors. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 475-485. doi: 10.3934/naco.2020046

[5]

Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583

[6]

Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009

[7]

Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021205

[8]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[9]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039

[10]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

[11]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054

[12]

Yannan Chen, Antal Jákli, Liqun Qi. The C-eigenvalue of third order tensors and its application in crystals. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021183

[13]

Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021075

[14]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[15]

Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 881-891. doi: 10.3934/jimo.2018075

[16]

Marius Tucsnak. Control of plate vibrations by means of piezoelectric actuators. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 281-293. doi: 10.3934/dcds.1996.2.281

[17]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315

[18]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[19]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[20]

Mounir Afilal, Abdelaziz Soufyane, Mauro de Lima Santos. Piezoelectric beams with magnetic effect and localized damping. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021056

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (181)
  • HTML views (210)
  • Cited by (0)

Other articles
by authors

[Back to Top]