• Previous Article
    The inventory replenishment policy in an uncertain production-inventory-routing system
  • JIMO Home
  • This Issue
  • Next Article
    Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms
doi: 10.3934/jimo.2021166
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Numerical solution to optimal control problems of oscillatory processes

The Institute of Control Systems, Azerbaijan National Academy of Sciences, 9, B. Vahabzadeh str., AZ1141, Baku, Azerbaijan

* Corresponding author: asadova.jamilya64@gmail.com

Received  October 2020 Revised  July 2021 Early access September 2021

A numerical approach to the investigation of optimal control problems of oscillatory processes with boundary and intermediate concentrated (lumped) control actions has been proposed in this paper. The corresponding analytical formulas for the components of the target functional gradient with respect to control actions considered on the class of piecewise continuous functions are obtained. The results of numerical experiments on the examples of solving model problems of optimal control of oscillatory processes with boundary and intermediate concentrated controls are provided. These results illustrate the dependence of the minimum settling time of oscillatory processes on the number and locations of concentrated control actions, on the process parameters, on the resistance coefficient of the medium (dissipation factor), and other factors.

Citation: Kamil Aida-Zade, Jamila Asadova. Numerical solution to optimal control problems of oscillatory processes. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021166
References:
[1]

K. R. Aida-Zade and J. A. Asadova, Study of transients in oil pipelines, Automation and Remote Control, 72 (2011), 2563-2577.  doi: 10.1134/S0005117911120113.  Google Scholar

[2]

K. R. Aida-Zade and J. A. Asadova, Optimal Control of Transients in Pipelines, Palmarium Academic Publishing, Saarbrücken, 2014, (in Russian). Google Scholar

[3]

A. G. Butkovsky, Optimal Control Theory for Systems with Distributed Parameters, Moscow, 1985, (in Russian). Google Scholar

[4] S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, Springer, New York, 2013.  doi: 10.1007/978-1-4614-5808-1.  Google Scholar
[5]

G. F. Guliyev, The problem of the point control for a hyperbolic equation, Avtomatika i Telemexanika, 1993 (1993), 80–84 (in Russian).  Google Scholar

[6]

M. GugatG Leugering and G. Sklyar, $L^p-$optimal boundary control for the wave equation, SIAM Journal Control and Optimization, 44 (2005), 49-74.  doi: 10.1137/S0363012903419212.  Google Scholar

[7]

V. A. Il'in, Two-endpoint boundary control of vibrations described by a finite-energy generalized solution of the wave equation, Differential Equations, 36 (2000), 1659-1675.  doi: 10.1007/BF02757368.  Google Scholar

[8]

V. A. Il'in and V. V. Tikhomirov, The wave equation with boundary control at two ends and the problem of the complete damping of a vibration process, Differential Equations, 35 (1999), 697-708.   Google Scholar

[9]

V. A. Il'in and E. I. Moiseyev, Optimal boundary control at one end with the free second end and a distribution of the string's total energy corresponding to this control, Dokladi RAN, 400 (2005), 585–591 (in Russian).  Google Scholar

[10]

K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation and its numerical realization as parametric optimization problem, SIAM Journal Control and Optimization, 51 (2013), 1232-1262.  doi: 10.1137/120877520.  Google Scholar

[11]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[12]

J. Loheac and E. Zuazua, Norm saturating property of time optimal controls for wave-type equations, IFAC – Papers OnLine, 49 (2016), 37-42.   Google Scholar

[13] F. P. Vasilyev, Optimization Methods, Moscow, Factorial Press, 2002.   Google Scholar
[14]

L. N. Znamenskaya, Control of string vibrations in the class of generalized solutions in $L_{2}$, Differential Equations, 38 (2002), 702-709.  doi: 10.1023/A:1020218926341.  Google Scholar

show all references

References:
[1]

K. R. Aida-Zade and J. A. Asadova, Study of transients in oil pipelines, Automation and Remote Control, 72 (2011), 2563-2577.  doi: 10.1134/S0005117911120113.  Google Scholar

[2]

K. R. Aida-Zade and J. A. Asadova, Optimal Control of Transients in Pipelines, Palmarium Academic Publishing, Saarbrücken, 2014, (in Russian). Google Scholar

[3]

A. G. Butkovsky, Optimal Control Theory for Systems with Distributed Parameters, Moscow, 1985, (in Russian). Google Scholar

[4] S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, Springer, New York, 2013.  doi: 10.1007/978-1-4614-5808-1.  Google Scholar
[5]

G. F. Guliyev, The problem of the point control for a hyperbolic equation, Avtomatika i Telemexanika, 1993 (1993), 80–84 (in Russian).  Google Scholar

[6]

M. GugatG Leugering and G. Sklyar, $L^p-$optimal boundary control for the wave equation, SIAM Journal Control and Optimization, 44 (2005), 49-74.  doi: 10.1137/S0363012903419212.  Google Scholar

[7]

V. A. Il'in, Two-endpoint boundary control of vibrations described by a finite-energy generalized solution of the wave equation, Differential Equations, 36 (2000), 1659-1675.  doi: 10.1007/BF02757368.  Google Scholar

[8]

V. A. Il'in and V. V. Tikhomirov, The wave equation with boundary control at two ends and the problem of the complete damping of a vibration process, Differential Equations, 35 (1999), 697-708.   Google Scholar

[9]

V. A. Il'in and E. I. Moiseyev, Optimal boundary control at one end with the free second end and a distribution of the string's total energy corresponding to this control, Dokladi RAN, 400 (2005), 585–591 (in Russian).  Google Scholar

[10]

K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation and its numerical realization as parametric optimization problem, SIAM Journal Control and Optimization, 51 (2013), 1232-1262.  doi: 10.1137/120877520.  Google Scholar

[11]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[12]

J. Loheac and E. Zuazua, Norm saturating property of time optimal controls for wave-type equations, IFAC – Papers OnLine, 49 (2016), 37-42.   Google Scholar

[13] F. P. Vasilyev, Optimization Methods, Moscow, Factorial Press, 2002.   Google Scholar
[14]

L. N. Znamenskaya, Control of string vibrations in the class of generalized solutions in $L_{2}$, Differential Equations, 38 (2002), 702-709.  doi: 10.1023/A:1020218926341.  Google Scholar

Figure 1.  Plots of optimal piecewise continuous control of the oscillatory process for Problem $ III $: a) control at the left end; b) control at the right end; c) intermediate pointwise control located at the point $ \bar{x}_{1} = 0,5 $
Figure 2.  Plots of optimal piecewise-continuous control actions by intermediate concentrated sources in Problem $ VI $ under the following arrangement: a) $ \bar{x}_{1} = 0,4 $; b) $ \bar{x}_{2} = 0,8 $
Figure 3.  Plots of optimal control actions of four ILS for problem $ III $ at the following arrangement of ILS: a) $ \bar{x}_{1} = 0,2 $; b) $ \bar{x}_{2} = 0,4 $; c) $ \bar{x}_{3} = 0,6 $; d) $ \bar{x}_{4} = 0,8 $
Table 1.  Parameters of six model problems of oscillatory processes control with boundary and intermediate lumped controls
Problem No. $ \alpha $ $ \hat{{\varphi }}_{10} \, $ $ \, \hat{{\varphi }}_{1T} \, $ $ \eta _{0} (0) $ $ \eta _{T} (0) $
$ I $ 2,112 1 1.5 3, 72 5, 34
$ II $ 3,168 1 1.5 3, 72 5, 34
$ III $ 2,112 1 2 3, 1 5, 17
$ IV $ 2,112 1 3 3, 87 7, 05
$ V $ 1,408 1 2 3, 1 5, 17
$ VI $ 2,112 1 4 3, 23 9, 38
Problem No. $ \alpha $ $ \hat{{\varphi }}_{10} \, $ $ \, \hat{{\varphi }}_{1T} \, $ $ \eta _{0} (0) $ $ \eta _{T} (0) $
$ I $ 2,112 1 1.5 3, 72 5, 34
$ II $ 3,168 1 1.5 3, 72 5, 34
$ III $ 2,112 1 2 3, 1 5, 17
$ IV $ 2,112 1 3 3, 87 7, 05
$ V $ 1,408 1 2 3, 1 5, 17
$ VI $ 2,112 1 4 3, 23 9, 38
Table 2.  Dependence of the optimal settling time for problems $ I $, $ III $, and $ VI $ on the arrangement of the single intermediate lumped control action
$ T_{opt}^{} $
$ \bar{x}_{1} $ $ f_{0}^{1} (0) $ $ I $ problem $ III $ problem $ VI $ problem
0, 1 0, 2112 0, 95 1 1, 05
0.2 0, 4224 0, 85 0, 85 0, 9
0, 3 0, 6336 0, 75 0, 75 0, 8
0, 4 0, 8448 0, 85 0, 85 0, 95
0, 5 1,056 1, 05 1, 05 1, 1
0, 6 1, 2672 0, 85 0, 85 0, 95
0, 7 1, 4784 0, 75 0, 75 0, 8
0, 8 1, 6896 0.85 0.85 0, 9
0, 9 1, 9008 0.95 0, 95 1, 05
$ T_{opt}^{} $
$ \bar{x}_{1} $ $ f_{0}^{1} (0) $ $ I $ problem $ III $ problem $ VI $ problem
0, 1 0, 2112 0, 95 1 1, 05
0.2 0, 4224 0, 85 0, 85 0, 9
0, 3 0, 6336 0, 75 0, 75 0, 8
0, 4 0, 8448 0, 85 0, 85 0, 95
0, 5 1,056 1, 05 1, 05 1, 1
0, 6 1, 2672 0, 85 0, 85 0, 95
0, 7 1, 4784 0, 75 0, 75 0, 8
0, 8 1, 6896 0.85 0.85 0, 9
0, 9 1, 9008 0.95 0, 95 1, 05
Table 3.  The optimal settling time of oscillatory processes in the problems $ I $, $ III $ and $ VI $ in the presence of two ILS
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0)) $ $ I $ problem $ III $ problem $ VI $ problem
(0, 1; 0, 9) (0, 2112; 1, 6896) 0, 85 0, 87 0, 94
(0, 2; 0, 8) (0, 4224; 1, 2672) 0, 65 0, 69 0, 75
(0, 3; 0, 7) (0, 6336; 0, 8448) 0, 66 0, 69 0, 74
(0,332; 0,668) (0, 7012; 0, 7096) 0, 72 0, 75 0, 84
(0, 4; 0, 6) (0, 8448; 0.4224) 0, 63 0, 69 0, 76
(0, 1; 0, 2) (0.2112; 0, 2112) 0, 82 0, 85 0, 94
(0, 2; 0, 3) (0, 4224; 0, 2112) 0, 75 0, 78 0, 85
(0, 3; 0, 4) (0, 6336; 0, 2112) 0.65 0.68 0, 75
(0, 4; 0, 5) (0, 8448; 0, 2112) 0.64 0, 67 0, 79
(0, 6; 0, 7) (1, 2672; 0, 2112) 0, 66 0, 68 0, 75
(0, 2; 0, 6) (0, 4224; 0, 8448) 0, 88 0, 9 0, 92
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0)) $ $ I $ problem $ III $ problem $ VI $ problem
(0, 1; 0, 9) (0, 2112; 1, 6896) 0, 85 0, 87 0, 94
(0, 2; 0, 8) (0, 4224; 1, 2672) 0, 65 0, 69 0, 75
(0, 3; 0, 7) (0, 6336; 0, 8448) 0, 66 0, 69 0, 74
(0,332; 0,668) (0, 7012; 0, 7096) 0, 72 0, 75 0, 84
(0, 4; 0, 6) (0, 8448; 0.4224) 0, 63 0, 69 0, 76
(0, 1; 0, 2) (0.2112; 0, 2112) 0, 82 0, 85 0, 94
(0, 2; 0, 3) (0, 4224; 0, 2112) 0, 75 0, 78 0, 85
(0, 3; 0, 4) (0, 6336; 0, 2112) 0.65 0.68 0, 75
(0, 4; 0, 5) (0, 8448; 0, 2112) 0.64 0, 67 0, 79
(0, 6; 0, 7) (1, 2672; 0, 2112) 0, 66 0, 68 0, 75
(0, 2; 0, 6) (0, 4224; 0, 8448) 0, 88 0, 9 0, 92
Table 4.  The optimal settling time in the presence of three ILS
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ,\bar{x}_{3} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0),\, \, f_{0}^{3} (0)) $ $ I $ prob. $ III $ prob. $ VI $ prob.
(0,252; 0, 5; 0,748) (0, 5322; 0, 5237; 0, 5237) 0, 61 0, 63 0, 65
(0, 1; 0, 5; 0, 9) (0, 2112; 0, 8448; 0, 8448) 0, 89 0, 91 0, 94
(0, 1; 0, 2; 0, 3) (0, 2112; 0, 2112; 0, 2112) 0, 82 0, 83 0, 87
(0, 1; 0, 3; 0, 5) (0, 2112; 0, 4224; 0, 4224) 0, 6 0, 62 0, 64
(0, 1; 0, 4; 0, 7) (0, 2112; 0, 6336; 0, 6336) 0, 7 0, 72 0, 76
(0, 4; 0, 5; 0, 6) (0, 8448; 0, 2112; 0, 2112) 0, 72 0, 74 0, 75
(0, 1; 0, 2; 0, 9) (0, 2112; 0, 2112; 1, 4784) 0, 83 0, 85 0, 86
(0, 1; 0, 2; 0, 8) (0, 2112; 0, 2112; 1, 2672) 0, 71 0, 73 0, 74
(0, 1; 0, 2; 0, 7) (0, 2112; 0, 2112; 1,056) 0, 74 0, 74 0, 77
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ,\bar{x}_{3} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0),\, \, f_{0}^{3} (0)) $ $ I $ prob. $ III $ prob. $ VI $ prob.
(0,252; 0, 5; 0,748) (0, 5322; 0, 5237; 0, 5237) 0, 61 0, 63 0, 65
(0, 1; 0, 5; 0, 9) (0, 2112; 0, 8448; 0, 8448) 0, 89 0, 91 0, 94
(0, 1; 0, 2; 0, 3) (0, 2112; 0, 2112; 0, 2112) 0, 82 0, 83 0, 87
(0, 1; 0, 3; 0, 5) (0, 2112; 0, 4224; 0, 4224) 0, 6 0, 62 0, 64
(0, 1; 0, 4; 0, 7) (0, 2112; 0, 6336; 0, 6336) 0, 7 0, 72 0, 76
(0, 4; 0, 5; 0, 6) (0, 8448; 0, 2112; 0, 2112) 0, 72 0, 74 0, 75
(0, 1; 0, 2; 0, 9) (0, 2112; 0, 2112; 1, 4784) 0, 83 0, 85 0, 86
(0, 1; 0, 2; 0, 8) (0, 2112; 0, 2112; 1, 2672) 0, 71 0, 73 0, 74
(0, 1; 0, 2; 0, 7) (0, 2112; 0, 2112; 1,056) 0, 74 0, 74 0, 77
Table 5.  The minimal settling time of oscillating processes in the case of four ILS
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ,\bar{x}_{3} ,\bar{x}_{4} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0),\, \, f_{0}^{3} (0),\, \, f_{0}^{4} (0)) $ $ I $ prob. $ III $ prob. $ VI $ prob.
(0, 2; 0, 4; 0, 6; 0, 8) (0, 4224; 0, 4224; 0, 4224; 0, 4224) 0, 51 0, 54 0, 57
(0, 1; 0, 2; 0, 8; 0, 9) (0, 2112; 0, 2112; 1, 2672; 0, 2112) 0, 7 0, 72 0, 76
(0, 1; 0, 3; 0, 7; 0, 9) (0, 2112; 0, 4224; 0, 8448; 0, 4224) 0, 51 0, 53 0, 59
(0, 1; 0, 2; 0, 3; 0, 4) (0, 2112; 0, 2112; 0, 2112; 0, 2112) 0, 72 0, 73 0, 74
(0, 1; 0, 2; 0, 3; 0, 9) (0, 2112; 0, 2112; 0, 2112; 1, 2672) 0, 71 0, 73 0, 77
(0, 1; 0, 2; 0, 3; 0, 8) (0, 2112; 0, 2112; 0, 2112; 1,056) 0, 62 0, 63 0, 66
(0, 1; 0, 2; 0, 3; 0, 7) (0, 2112; 0, 2112; 0, 2112; 0, 8448) 0, 7 0, 72 0, 75
$ T_{opt}^{} $
$ (\bar{x}_{1} ,\, \, \bar{x}_{2} ,\bar{x}_{3} ,\bar{x}_{4} ) $ $ (f_{0}^{1} (0),\, \, f_{0}^{2} (0),\, \, f_{0}^{3} (0),\, \, f_{0}^{4} (0)) $ $ I $ prob. $ III $ prob. $ VI $ prob.
(0, 2; 0, 4; 0, 6; 0, 8) (0, 4224; 0, 4224; 0, 4224; 0, 4224) 0, 51 0, 54 0, 57
(0, 1; 0, 2; 0, 8; 0, 9) (0, 2112; 0, 2112; 1, 2672; 0, 2112) 0, 7 0, 72 0, 76
(0, 1; 0, 3; 0, 7; 0, 9) (0, 2112; 0, 4224; 0, 8448; 0, 4224) 0, 51 0, 53 0, 59
(0, 1; 0, 2; 0, 3; 0, 4) (0, 2112; 0, 2112; 0, 2112; 0, 2112) 0, 72 0, 73 0, 74
(0, 1; 0, 2; 0, 3; 0, 9) (0, 2112; 0, 2112; 0, 2112; 1, 2672) 0, 71 0, 73 0, 77
(0, 1; 0, 2; 0, 3; 0, 8) (0, 2112; 0, 2112; 0, 2112; 1,056) 0, 62 0, 63 0, 66
(0, 1; 0, 2; 0, 3; 0, 7) (0, 2112; 0, 2112; 0, 2112; 0, 8448) 0, 7 0, 72 0, 75
[1]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[2]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

[3]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[4]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[5]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[6]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[7]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[8]

Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control & Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125

[9]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[10]

Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141

[11]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4461-4476. doi: 10.3934/dcds.2021043

[12]

Roberto de A. Capistrano-Filho, Vilmos Komornik, Ademir F. Pazoto. Pointwise control of the linearized Gear-Grimshaw system. Evolution Equations & Control Theory, 2020, 9 (3) : 693-719. doi: 10.3934/eect.2020029

[13]

Shijin Deng, Weike Wang, Shih-Hsien Yu. Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Networks & Heterogeneous Media, 2007, 2 (3) : 383-395. doi: 10.3934/nhm.2007.2.383

[14]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[15]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[16]

Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021005

[17]

R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435

[18]

María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153

[19]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[20]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (105)
  • HTML views (129)
  • Cited by (0)

Other articles
by authors

[Back to Top]