doi: 10.3934/jimo.2021168
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue

1. 

School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India

2. 

Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000, Kingston, Ontario, Canada K7K 7B4

Received  January 2021 Revised  May 2021 Early access September 2021

We give analytically explicit solutions for the distribution of the number of customers served during a busy period for the $ M^X/PH/1 $ queues when initiated with $ m $ customers. When customers arrive in batches, we present the functional equation for the Laplace transform of the number of customers served during a busy period. Applying the Lagrange inversion theorem, we provide a refined result to this functional equation. From a phase-type service distribution, we obtain the distribution of the number of customers served during a busy period for various special cases such as exponential, Erlang-k, generalized Erlang, hyperexponential, Coxian, and interrupted Poisson process. The results are exact, rapid and vigorous, owing to the clarity of the expressions. Moreover, we also consider computational results for several service-time distributions using our method. Phase-type distributions can approximate any non-negative valued distribution arbitrarily close, making them a useful practical stochastic modelling tool. These distributions have eloquent properties which make them beneficial in the computation of performance models.

Citation: Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021168
References:
[1]

J. Abate and W. Whitt, The fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.  doi: 10.1007/BF01158520.

[2]

J. Abate and W. Whitt, Numerical inversion of probability generating functions, Operations Research Letters, 12 (1992), 245-251.  doi: 10.1016/0167-6377(92)90050-D.

[3]

J. Abate and W. Whitt, Solving probability transform functional equations for numerical inversion, Operations Research Letters, 12 (1992), 275-281.  doi: 10.1016/0167-6377(92)90085-H.

[4]

S. Asmussen and H. Albrecher, Ruin Probabilities, vol. 14, Advanced Series on Statistical Science & Applied Probability, Hackensack, NJ, 2010. doi: 10.1142/9789814282536.

[5]

E. Borel, Sur l'emploi du théoreme de Bernoulli pour faciliter le calcul d'une infinité de coefficients. Application au probleme de l'attentea un guichet, CR Acad. Sci. Paris, 214 (1942), 452-456. 

[6]

L. Breuer and D. Baum, An Introduction to Queueing Theory: And Matrix-Analytic Methods, Springer Science & Business Media, 2005. doi: 10.1007/1-4020-3631-0.

[7]

M. L. Chaudhry and V. Goswami, Analytically explicit results for the distribution of the number of customers served during a busy period for special cases of the $M/G/1$ queue, Journal of Probability and Statistics, 2019 (2019), Art. ID 7398658, 15 pp. doi: 10.1155/2019/7398658.

[8]
[9]

P. C. Consul and F. Famoye, Lagrangian Probability Distributions, Springer, 2006.

[10]

P. C. Consul and L. R. Shenton, Use of lagrange expansion for generating discrete generalized probability distributions, SIAM Journal on Applied Mathematics, 23 (1972), 239-248.  doi: 10.1137/0123026.

[11]

D. R. Cox, Some statistical methods connected with series of events, Journal of the Royal Statistical Society: Series B (Methodological), 17 (1955), 129-157.  doi: 10.1111/j.2517-6161.1955.tb00188.x.

[12]

A. K. Erlang, Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges, Post Office Electrical Engineer's Journal, 10 (1917), 189-197. 

[13]

G. Falin, Functioning under nonsteady conditions of a single-channel system with group arrival of requests and repeated calls, Ukrainian Mathematical Journal, 33 (1981), 429-432.  doi: 10.1007/BF01085753.

[14]

W. Fischer and K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook, Performance Evaluation, 18 (1993), 149-171.  doi: 10.1016/0166-5316(93)90035-S.

[15]

F. A. Haight, A distribution analogous to the borel-tanner, Biometrika, 48 (1961), 167-173.  doi: 10.1093/biomet/48.1-2.167.

[16]

D. P. Heyman, An approximation for the busy period of the ${M/G/1}$ queue using a diffusion model, Journal of Applied Probability, 11 (1974), 159-169.  doi: 10.2307/3212592.

[17]

D. G. Kendall, Some problems in the theory of dams, Journal of the Royal Statistical Society. Series B (Methodological), 19 (1957), 207-233.  doi: 10.1111/j.2517-6161.1957.tb00257.x.

[18]

J. Kim, Busy period distribution of a batch arrival retrial queue, Communications of the Korean Mathematical Society, 32 (2017), 425-433.  doi: 10.4134/CKMS.c160106.

[19]

L. Kleinrock, Queueing Systems, vol. 1, Wiley, New York, 1975.

[20]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, 1999. doi: 10.1137/1.9780898719734.

[21] J. Medhi, Stochastic Models in Queueing Theory, Academic Press, Amsterdam, 2003. 
[22]

M. F. Neuts, Computational uses of the method of phases in the theory of queues, Computers & Mathematics with Applications, 1 (1975), 151-166.  doi: 10.1016/0898-1221(75)90015-2.

[23]

M. F. Neuts, Matrix-geometric solutions in stochastic models: An algorithmic approach, Bull. Amer. Math. Soc, 8 (1983), 97-99.  doi: 10.1090/S0273-0979-1983-15095-4.

[24]

N. U. Prabhu, Some results for the queue with Poisson arrivals, Journal of the Royal Statistical Society: Series B (Methodological), 22 (1960), 104-107.  doi: 10.1111/j.2517-6161.1960.tb00357.x.

[25]

N. U. Prabhu, Queues and Inventories, John Wiley & Sons, 1965.

[26]

J. F. Shortle, J. M. Thompson, D. Gross and C. M. Harris, Fundamentals of Queueing Theory, Fifth Edition, John Wiley & Sons, 2018. doi: 10.1002/9781119453765.

[27]

W. J. Stewart, Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling, Princeton University Press, 2009.

[28] L. Takács, Combinatorial Methods in the Theory of Stochastic Processes, Wiley, New York, 1967. 
[29]

J. C. Tanner, A problem of interference between two queues, Biometrika, 40 (1953), 58-69.  doi: 10.1093/biomet/40.1-2.58.

show all references

References:
[1]

J. Abate and W. Whitt, The fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.  doi: 10.1007/BF01158520.

[2]

J. Abate and W. Whitt, Numerical inversion of probability generating functions, Operations Research Letters, 12 (1992), 245-251.  doi: 10.1016/0167-6377(92)90050-D.

[3]

J. Abate and W. Whitt, Solving probability transform functional equations for numerical inversion, Operations Research Letters, 12 (1992), 275-281.  doi: 10.1016/0167-6377(92)90085-H.

[4]

S. Asmussen and H. Albrecher, Ruin Probabilities, vol. 14, Advanced Series on Statistical Science & Applied Probability, Hackensack, NJ, 2010. doi: 10.1142/9789814282536.

[5]

E. Borel, Sur l'emploi du théoreme de Bernoulli pour faciliter le calcul d'une infinité de coefficients. Application au probleme de l'attentea un guichet, CR Acad. Sci. Paris, 214 (1942), 452-456. 

[6]

L. Breuer and D. Baum, An Introduction to Queueing Theory: And Matrix-Analytic Methods, Springer Science & Business Media, 2005. doi: 10.1007/1-4020-3631-0.

[7]

M. L. Chaudhry and V. Goswami, Analytically explicit results for the distribution of the number of customers served during a busy period for special cases of the $M/G/1$ queue, Journal of Probability and Statistics, 2019 (2019), Art. ID 7398658, 15 pp. doi: 10.1155/2019/7398658.

[8]
[9]

P. C. Consul and F. Famoye, Lagrangian Probability Distributions, Springer, 2006.

[10]

P. C. Consul and L. R. Shenton, Use of lagrange expansion for generating discrete generalized probability distributions, SIAM Journal on Applied Mathematics, 23 (1972), 239-248.  doi: 10.1137/0123026.

[11]

D. R. Cox, Some statistical methods connected with series of events, Journal of the Royal Statistical Society: Series B (Methodological), 17 (1955), 129-157.  doi: 10.1111/j.2517-6161.1955.tb00188.x.

[12]

A. K. Erlang, Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges, Post Office Electrical Engineer's Journal, 10 (1917), 189-197. 

[13]

G. Falin, Functioning under nonsteady conditions of a single-channel system with group arrival of requests and repeated calls, Ukrainian Mathematical Journal, 33 (1981), 429-432.  doi: 10.1007/BF01085753.

[14]

W. Fischer and K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook, Performance Evaluation, 18 (1993), 149-171.  doi: 10.1016/0166-5316(93)90035-S.

[15]

F. A. Haight, A distribution analogous to the borel-tanner, Biometrika, 48 (1961), 167-173.  doi: 10.1093/biomet/48.1-2.167.

[16]

D. P. Heyman, An approximation for the busy period of the ${M/G/1}$ queue using a diffusion model, Journal of Applied Probability, 11 (1974), 159-169.  doi: 10.2307/3212592.

[17]

D. G. Kendall, Some problems in the theory of dams, Journal of the Royal Statistical Society. Series B (Methodological), 19 (1957), 207-233.  doi: 10.1111/j.2517-6161.1957.tb00257.x.

[18]

J. Kim, Busy period distribution of a batch arrival retrial queue, Communications of the Korean Mathematical Society, 32 (2017), 425-433.  doi: 10.4134/CKMS.c160106.

[19]

L. Kleinrock, Queueing Systems, vol. 1, Wiley, New York, 1975.

[20]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, 1999. doi: 10.1137/1.9780898719734.

[21] J. Medhi, Stochastic Models in Queueing Theory, Academic Press, Amsterdam, 2003. 
[22]

M. F. Neuts, Computational uses of the method of phases in the theory of queues, Computers & Mathematics with Applications, 1 (1975), 151-166.  doi: 10.1016/0898-1221(75)90015-2.

[23]

M. F. Neuts, Matrix-geometric solutions in stochastic models: An algorithmic approach, Bull. Amer. Math. Soc, 8 (1983), 97-99.  doi: 10.1090/S0273-0979-1983-15095-4.

[24]

N. U. Prabhu, Some results for the queue with Poisson arrivals, Journal of the Royal Statistical Society: Series B (Methodological), 22 (1960), 104-107.  doi: 10.1111/j.2517-6161.1960.tb00357.x.

[25]

N. U. Prabhu, Queues and Inventories, John Wiley & Sons, 1965.

[26]

J. F. Shortle, J. M. Thompson, D. Gross and C. M. Harris, Fundamentals of Queueing Theory, Fifth Edition, John Wiley & Sons, 2018. doi: 10.1002/9781119453765.

[27]

W. J. Stewart, Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling, Princeton University Press, 2009.

[28] L. Takács, Combinatorial Methods in the Theory of Stochastic Processes, Wiley, New York, 1967. 
[29]

J. C. Tanner, A problem of interference between two queues, Biometrika, 40 (1953), 58-69.  doi: 10.1093/biomet/40.1-2.58.

Figure 1.  Two Phase type distributions with two phases
Figure 2.  An exponential service phase
Figure 3.  Two exponential (Erlang-2) service phases in tandem
Figure 4.  Phase diagram for the generalized Erlang-2 distribution
Figure 5.  Two exponential phases in parallel
Figure 6.  The two phase Coxian distribution
Figure 7.  Phase diagram for the IPP distribution
Table .  Exponential distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \frac{\mu(1-qz)}{\lambda+\mu-z(\lambda+q\mu)} $ $ \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{n}\sum\limits_{j = 0}^{n-m} {2n-m-j-1 \choose n-m-j} \left(\frac{\lambda+\mu q}{\lambda+\mu}\right)^{n-m-j} {n \choose j}(-q)^j $
Arbitrary $ \frac{\mu}{\lambda+\mu-\lambda(g_1 z+g_2 z^2)} $ $ \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{n}\sum\limits_{r = 0}^{\infty} {n+r-1 \choose r} {r \choose n-m-r}\left(\frac{\lambda g_1}{\lambda+\mu}\right)^{r}\left(\frac{g_2}{g_1}\right)^{n-m-r} $
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \frac{\mu(1-qz)}{\lambda+\mu-z(\lambda+q\mu)} $ $ \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{n}\sum\limits_{j = 0}^{n-m} {2n-m-j-1 \choose n-m-j} \left(\frac{\lambda+\mu q}{\lambda+\mu}\right)^{n-m-j} {n \choose j}(-q)^j $
Arbitrary $ \frac{\mu}{\lambda+\mu-\lambda(g_1 z+g_2 z^2)} $ $ \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{n}\sum\limits_{r = 0}^{\infty} {n+r-1 \choose r} {r \choose n-m-r}\left(\frac{\lambda g_1}{\lambda+\mu}\right)^{r}\left(\frac{g_2}{g_1}\right)^{n-m-r} $
Table .  Erlang distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \left(\frac{\mu(1-qz)}{\lambda+\mu-z(\lambda+q\mu)}\right)^2 $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{nk}\sum\limits_{j = 0}^{n-m} {nk+n-m-j-1 \choose n-m-j} {nk \choose j} (-q)^j \\ \times \left(\frac{\lambda+\mu q}{\lambda+\mu}\right)^{n-m-j} \end{array} $
Arbitrary $ \left(\frac{\mu}{\lambda+\mu-\lambda(g_1 z+g_2 z^2)}\right)^2 $ $ \begin{array}{c} \frac{m}{n}{\left( {\frac{\mu }{{\mu + \lambda }}} \right)^{nk}}\sum\limits_{r = 0}^\infty {\left( \begin{array}{c} nk + r - 1\\ r \end{array} \right)} \left( \begin{array}{c} r\\ n - m - r \end{array} \right){\left( {\frac{{\lambda {g_1}}}{{\lambda + \mu }}} \right)^r}\\ \times {\left( {\frac{{{g_2}}}{{{g_1}}}} \right)^{n - m - r}} \end{array}$
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \left(\frac{\mu(1-qz)}{\lambda+\mu-z(\lambda+q\mu)}\right)^2 $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu}{\mu+\lambda}\right)^{nk}\sum\limits_{j = 0}^{n-m} {nk+n-m-j-1 \choose n-m-j} {nk \choose j} (-q)^j \\ \times \left(\frac{\lambda+\mu q}{\lambda+\mu}\right)^{n-m-j} \end{array} $
Arbitrary $ \left(\frac{\mu}{\lambda+\mu-\lambda(g_1 z+g_2 z^2)}\right)^2 $ $ \begin{array}{c} \frac{m}{n}{\left( {\frac{\mu }{{\mu + \lambda }}} \right)^{nk}}\sum\limits_{r = 0}^\infty {\left( \begin{array}{c} nk + r - 1\\ r \end{array} \right)} \left( \begin{array}{c} r\\ n - m - r \end{array} \right){\left( {\frac{{\lambda {g_1}}}{{\lambda + \mu }}} \right)^r}\\ \times {\left( {\frac{{{g_2}}}{{{g_1}}}} \right)^{n - m - r}} \end{array}$
Table .  Generalized Erlang distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \frac{\mu_1\mu_2}{\lambda+\mu_1-z(\lambda+q\mu_1)} \\ \times \frac{(1-qz)^2}{\lambda+\mu_2-z(\lambda+q\mu_2)} $ $ \begin{array}{c} \frac{m}{n}\prod\limits_{i = 1}^2 {{{\left( {\frac{{{\mu _i}}}{{{\mu _i} + \lambda }}} \right)}^n}} \sum\limits_{i = 0}^{n - m} {\left( \begin{array}{c} 2n\\ i \end{array} \right)} {( - q)^i}\sum\limits_{j = 0}^{n - m - i} {\left( \begin{array}{c} n + j - 1\\ j \end{array} \right)} \\ \times {\left( {\frac{{\lambda + q{\mu _2}}}{{\lambda + {\mu _2}}}} \right)^j}\left( \begin{array}{c} 2n - m - i - j - 1\\ n - m - i - j \end{array} \right){\left( {\frac{{\lambda + q{\mu _1}}}{{\lambda + {\mu _1}}}} \right)^{n - m - i - j}} \end{array} $
Arbitrary $ \begin{array}{c} \prod\limits_{i = 1}^{2}\frac{\mu_i}{\mu_i+\lambda} \\ \times \prod\limits_{i = 1}^{4}(1-z/\omega_i)^{-1} \end{array} $ $ \begin{array}{c} \frac{m}{n}\prod\limits_{i = 1}^{2}\left(\frac{\mu_i}{\mu_i+\lambda}\right)^n\sum\limits_{i = 0}^{n-m}{n+i-1 \choose i}\omega_1^{-i}\sum\limits_{j = 0}^{n-m-i}{n+j-1 \choose j} \\ \times \omega_2^{-j}\sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\omega_3^{-k} {2n-m-i-j-k-1 \choose n-m-i-j-k} \\ \times\omega_4^{i+j+k+m-n} \end{array}$
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \frac{\mu_1\mu_2}{\lambda+\mu_1-z(\lambda+q\mu_1)} \\ \times \frac{(1-qz)^2}{\lambda+\mu_2-z(\lambda+q\mu_2)} $ $ \begin{array}{c} \frac{m}{n}\prod\limits_{i = 1}^2 {{{\left( {\frac{{{\mu _i}}}{{{\mu _i} + \lambda }}} \right)}^n}} \sum\limits_{i = 0}^{n - m} {\left( \begin{array}{c} 2n\\ i \end{array} \right)} {( - q)^i}\sum\limits_{j = 0}^{n - m - i} {\left( \begin{array}{c} n + j - 1\\ j \end{array} \right)} \\ \times {\left( {\frac{{\lambda + q{\mu _2}}}{{\lambda + {\mu _2}}}} \right)^j}\left( \begin{array}{c} 2n - m - i - j - 1\\ n - m - i - j \end{array} \right){\left( {\frac{{\lambda + q{\mu _1}}}{{\lambda + {\mu _1}}}} \right)^{n - m - i - j}} \end{array} $
Arbitrary $ \begin{array}{c} \prod\limits_{i = 1}^{2}\frac{\mu_i}{\mu_i+\lambda} \\ \times \prod\limits_{i = 1}^{4}(1-z/\omega_i)^{-1} \end{array} $ $ \begin{array}{c} \frac{m}{n}\prod\limits_{i = 1}^{2}\left(\frac{\mu_i}{\mu_i+\lambda}\right)^n\sum\limits_{i = 0}^{n-m}{n+i-1 \choose i}\omega_1^{-i}\sum\limits_{j = 0}^{n-m-i}{n+j-1 \choose j} \\ \times \omega_2^{-j}\sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\omega_3^{-k} {2n-m-i-j-k-1 \choose n-m-i-j-k} \\ \times\omega_4^{i+j+k+m-n} \end{array}$
Table .  Hyperexponential distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{(1 - qz)}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i)}\right)^n \sum\limits_{i = 0}^{n-m} {n \choose i}\left(\frac{\lambda D_1+q D_2}{\lambda D_1+D_2}\right)^i \sum\limits_{j = 0}^{n-m-i} {n \choose j} \\ \times (-q)^j \sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\left(\frac{\lambda+q \mu_1 }{\lambda+\mu_1}\right)^{k} \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k} \left(\frac{\lambda+q \mu_2 }{\lambda+\mu_2}\right)^{n-m-i-j-k} \end{array} $
Arbitrary $ \frac{(\lambda D_1+D_2)\prod\limits_{i = 1}^{2}(1-z/\xi_i)}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) \prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i)}\right)^n \sum\limits_{i = 0}^{n-m}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-m-i}{n \choose j}(-\xi_2)^{-j} \\ \times \sum\limits_{k_1 = 0}^{n-m-i-j}{n+k_1-1 \choose k_1} \omega_1^{-k_1} \sum\limits_{k_2 = 0}^{n-m-i-j-k_1} {n+k_2-1 \choose k_2} \\ \times \omega_2^{-k_2}\sum\limits_{k_3 = 0}^{n-m-i-j-k_1-k_2} {n+k_3-1 \choose k_3}\omega_3^{-k_3} \\ \times \ {2n-m-i-j-k_1-k_2-k_3-1 \choose n-m-i-j-k_1-k_2-k_3} \omega_4^{i+j+k_1+k_2+k_3+m-n} \end{array} $
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{(1 - qz)}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i)}\right)^n \sum\limits_{i = 0}^{n-m} {n \choose i}\left(\frac{\lambda D_1+q D_2}{\lambda D_1+D_2}\right)^i \sum\limits_{j = 0}^{n-m-i} {n \choose j} \\ \times (-q)^j \sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\left(\frac{\lambda+q \mu_1 }{\lambda+\mu_1}\right)^{k} \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k} \left(\frac{\lambda+q \mu_2 }{\lambda+\mu_2}\right)^{n-m-i-j-k} \end{array} $
Arbitrary $ \frac{(\lambda D_1+D_2)\prod\limits_{i = 1}^{2}(1-z/\xi_i)}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) \prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i)}\right)^n \sum\limits_{i = 0}^{n-m}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-m-i}{n \choose j}(-\xi_2)^{-j} \\ \times \sum\limits_{k_1 = 0}^{n-m-i-j}{n+k_1-1 \choose k_1} \omega_1^{-k_1} \sum\limits_{k_2 = 0}^{n-m-i-j-k_1} {n+k_2-1 \choose k_2} \\ \times \omega_2^{-k_2}\sum\limits_{k_3 = 0}^{n-m-i-j-k_1-k_2} {n+k_3-1 \choose k_3}\omega_3^{-k_3} \\ \times \ {2n-m-i-j-k_1-k_2-k_3-1 \choose n-m-i-j-k_1-k_2-k_3} \omega_4^{i+j+k_1+k_2+k_3+m-n} \end{array} $
Table .  Cox-$ C_2 $ distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $\begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{1 - qz}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\mu_i+\lambda)}\right)^{n} \sum\limits_{i = 0}^{n-m}{n \choose i}(-1)^i \left(\frac{\lambda(1-\beta)+q \mu_2}{\lambda(1-\beta)+\mu_2}\right)^{i} \\ \times \sum\limits_{j = 0}^{n-m-i} {n \choose j}(-q)^j \sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\left(\frac{\lambda+q \mu_1 }{\lambda+\mu_1}\right)^k \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k}\left(\frac{\lambda+q \mu_2 }{\lambda+\mu_2}\right)^{n-m-i-j-k} \end{array} $
Arbitrary $ \frac{(\lambda D_1+D_2)\prod\limits_{i = 1}^{2}(1-z/\xi_i)}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) \prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{1}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) }\right)^n \sum\limits_{i = 0}^{n-1}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-1-j}{n \choose j}(-\xi_2)^{-j} \\ \times\sum\limits_{k = 0}^{n-1-i-j}{n+k-1 \choose k} \omega_1^{-k} \sum\limits_{l = 0}^{n-1-i-j-k} {n+l-1 \choose l}\omega_2^{-l} \\ \times \sum\limits_{m = 0}^{n-1-i-j-k-l} {n+m-1 \choose m}\omega_3^{-m} \\ {2n-i-j-k-l-m-2 \choose n-i-j-k-l-m-1} \omega_4^{i+j+k+l+m+1-n} \end{array} $
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $\begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{1 - qz}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\mu_i+\lambda)}\right)^{n} \sum\limits_{i = 0}^{n-m}{n \choose i}(-1)^i \left(\frac{\lambda(1-\beta)+q \mu_2}{\lambda(1-\beta)+\mu_2}\right)^{i} \\ \times \sum\limits_{j = 0}^{n-m-i} {n \choose j}(-q)^j \sum\limits_{k = 0}^{n-m-i-j}{n+k-1 \choose k}\left(\frac{\lambda+q \mu_1 }{\lambda+\mu_1}\right)^k \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k}\left(\frac{\lambda+q \mu_2 }{\lambda+\mu_2}\right)^{n-m-i-j-k} \end{array} $
Arbitrary $ \frac{(\lambda D_1+D_2)\prod\limits_{i = 1}^{2}(1-z/\xi_i)}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) \prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{1}{n}\left(\frac{\lambda D_1+D_2}{\prod\limits_{i = 1}^{2}(\lambda+\mu_i) }\right)^n \sum\limits_{i = 0}^{n-1}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-1-j}{n \choose j}(-\xi_2)^{-j} \\ \times\sum\limits_{k = 0}^{n-1-i-j}{n+k-1 \choose k} \omega_1^{-k} \sum\limits_{l = 0}^{n-1-i-j-k} {n+l-1 \choose l}\omega_2^{-l} \\ \times \sum\limits_{m = 0}^{n-1-i-j-k-l} {n+m-1 \choose m}\omega_3^{-m} \\ {2n-i-j-k-l-m-2 \choose n-i-j-k-l-m-1} \omega_4^{i+j+k+l+m+1-n} \end{array} $
Table .  IPP distribution
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{1 - qz}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu(\lambda+r_2)}{u_3}\right)^n \sum\limits_{i = 0}^{n-m}{n+i-1 \choose i}\psi_1^{-i} \sum\limits_{j = 0}^{n-m-i} {n \choose j} \\ \times \left(- \frac{\lambda+q r_2 }{\lambda+r_2}\right)^j \sum\limits_{k = 0}^{n-m-i-j}{n \choose k}(-q)^{k} \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k}\psi_2^{i+j+k+m-n} \end{array} $
Arbitrary $ \frac{\lambda D_1+D_2-\lambda D_1(g_1 z+g_2 z^2)}{(\lambda^2 g_2^2 \prod\limits_{i = 1}^{4} \omega_i)\prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu(\lambda+r_2)}{u_3}\right)^n \sum\limits_{i = 0}^{n-m}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-m-i}{n \choose j}(-\xi_2)^{-j} \\ \times \sum\limits_{k_1 = 0}^{n-m-i-j}{n+k_1-1 \choose k_1}\omega_1^{-k_1}\sum\limits_{k_2 = 0}^{n-m-i-j-k_1} {n+k_2-1 \choose k_2} \\ \times \omega_2^{-k_2} \sum\limits_{k_3 = 0}^{n-m-i-j-k_1-k_2} {n+k_3-1 \choose k_3}\omega_3^{-k_3} \\ \times {2n-m-i-j-k_1-k_2-k_3-1 \choose n-m-i-j-k_1-k_2-k_3} \omega_4^{i+j+k_1+l+k_2+k_3+m-n} \end{array}$
Batch size distribution $ R(z) $ $ P(N_m = n),\; n = m, m+1,\dots $
Geometric $ \begin{array}{c} \frac{{(\lambda {D_1} + {D_2})\left[ {1 - z\frac{{\lambda {D_1} + q{D_2}}}{{\lambda {D_1} + {D_2}}}} \right]}}{{\lambda + {\mu _1} - z(\lambda + q{\mu _1})}}\\ \times \frac{{1 - qz}}{{\lambda + {\mu _2} - z(\lambda + q{\mu _2})}} \end{array}$ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu(\lambda+r_2)}{u_3}\right)^n \sum\limits_{i = 0}^{n-m}{n+i-1 \choose i}\psi_1^{-i} \sum\limits_{j = 0}^{n-m-i} {n \choose j} \\ \times \left(- \frac{\lambda+q r_2 }{\lambda+r_2}\right)^j \sum\limits_{k = 0}^{n-m-i-j}{n \choose k}(-q)^{k} \\ \times {2n-m-i-j-k-1 \choose n-m-i-j-k}\psi_2^{i+j+k+m-n} \end{array} $
Arbitrary $ \frac{\lambda D_1+D_2-\lambda D_1(g_1 z+g_2 z^2)}{(\lambda^2 g_2^2 \prod\limits_{i = 1}^{4} \omega_i)\prod\limits_{i = 1}^{4}(1-z/\omega_i)} $ $ \begin{array}{c} \frac{m}{n}\left(\frac{\mu(\lambda+r_2)}{u_3}\right)^n \sum\limits_{i = 0}^{n-m}{n \choose i}(-\xi_1)^{-i}\sum\limits_{j = 0}^{n-m-i}{n \choose j}(-\xi_2)^{-j} \\ \times \sum\limits_{k_1 = 0}^{n-m-i-j}{n+k_1-1 \choose k_1}\omega_1^{-k_1}\sum\limits_{k_2 = 0}^{n-m-i-j-k_1} {n+k_2-1 \choose k_2} \\ \times \omega_2^{-k_2} \sum\limits_{k_3 = 0}^{n-m-i-j-k_1-k_2} {n+k_3-1 \choose k_3}\omega_3^{-k_3} \\ \times {2n-m-i-j-k_1-k_2-k_3-1 \choose n-m-i-j-k_1-k_2-k_3} \omega_4^{i+j+k_1+l+k_2+k_3+m-n} \end{array}$
Table 1.  PH service-time distributions
$ \mu_1=3 $, $ \mu_2=1 $, $ r_{10}=1/3 $, $ r_{12}=2/3 $, $ r_{20}=1 $, $ r_{21}=0 $
Geometric batch size
$ p=0.6 $, $ q=0.4 $
Arbitrary batch size
$ g_1=0.4 $, $ g_2=0.6 $
$ n $ $ \rho=0.25 $ $ \rho=0.5 $ $ \rho=0.75 $ $ \rho=0.25 $ $ \rho=0.5 $ $ \rho=0.75 $
1 0.869565 0.769231 0.689655 0.864865 0.761905 0.680851
2 0.059176 0.08193 0.088565 0.040432 0.055286 0.059178
3 0.028637 0.042662 0.047178 0.056233 0.071207 0.070724
4 0.015533 0.025829 0.029730 0.012702 0.024379 0.028500
5 0.009138 0.017213 0.020736 0.012009 0.023001 0.026226
6 0.005694 0.012222 0.015438 0.004622 0.012738 0.016531
7 0.003698 0.009070 0.012021 0.003650 0.010773 0.014187
8 0.002478 0.006951 0.009672 0.001825 0.007351 0.010714
9 0.001700 0.005460 0.007977 0.001325 0.006028 0.009135
10 0.001189 0.004373 0.006709 0.000762 0.004546 0.007492
50 0.000000 0.000033 0.000367 0.000000 0.000016 0.000367
100 0.000000 0.000001 0.000072 0.000000 0.000000 0.000062
150 0.000000 0.000000 0.000022 0.000000 0.000000 0.000016
200 0.000000 0.000000 0.000008 0.000000 0.000000 0.000005
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 1.3333 2.00 4.00 1.3333 2.00 4.00
$ V(N) $ 1.5309 11.33 148.00 1.1852 9.00 120.00
$ \mu_1=3 $, $ \mu_2=1 $, $ r_{10}=1/3 $, $ r_{12}=2/3 $, $ r_{20}=1 $, $ r_{21}=0 $
Geometric batch size
$ p=0.6 $, $ q=0.4 $
Arbitrary batch size
$ g_1=0.4 $, $ g_2=0.6 $
$ n $ $ \rho=0.25 $ $ \rho=0.5 $ $ \rho=0.75 $ $ \rho=0.25 $ $ \rho=0.5 $ $ \rho=0.75 $
1 0.869565 0.769231 0.689655 0.864865 0.761905 0.680851
2 0.059176 0.08193 0.088565 0.040432 0.055286 0.059178
3 0.028637 0.042662 0.047178 0.056233 0.071207 0.070724
4 0.015533 0.025829 0.029730 0.012702 0.024379 0.028500
5 0.009138 0.017213 0.020736 0.012009 0.023001 0.026226
6 0.005694 0.012222 0.015438 0.004622 0.012738 0.016531
7 0.003698 0.009070 0.012021 0.003650 0.010773 0.014187
8 0.002478 0.006951 0.009672 0.001825 0.007351 0.010714
9 0.001700 0.005460 0.007977 0.001325 0.006028 0.009135
10 0.001189 0.004373 0.006709 0.000762 0.004546 0.007492
50 0.000000 0.000033 0.000367 0.000000 0.000016 0.000367
100 0.000000 0.000001 0.000072 0.000000 0.000000 0.000062
150 0.000000 0.000000 0.000022 0.000000 0.000000 0.000016
200 0.000000 0.000000 0.000008 0.000000 0.000000 0.000005
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 1.3333 2.00 4.00 1.3333 2.00 4.00
$ V(N) $ 1.5309 11.33 148.00 1.1852 9.00 120.00
Table 2.  Exponential (Exp), Erlang (Er), Generalized-Erlang (GEr) service-time distributions
Geometric batch size
$ p=0.8 $, $ q=0.2 $, $ m=3 $, $ \rho=0.65 $
Arbitrary batch size
$ g_1=0.7 $, $ g_2=0.3 $, $ m=3 $, $ \rho=0.65 $
$ n $ Exp Er GEr Exp Er GEr
3 0.284754 0.249906 0.251187 0.296296 0.262144 0.263406
4 0.153814 0.155912 0.155949 0.138271 0.140929 0.140925
5 0.103324 0.108806 0.108638 0.104033 0.108104 0.107992
6 0.074714 0.080158 0.079956 0.074246 0.079344 0.079161
7 0.056661 0.061381 0.061192 0.057051 0.061597 0.061419
8 0.04445 0.048385 0.048220 0.044842 0.048768 0.048605
9 0.035768 0.039006 0.038866 0.036193 0.039482 0.039341
10 0.029358 0.032012 0.031895 0.029750 0.032485 0.032365
50 0.000625 0.000544 0.000547 0.000618 0.000532 0.000536
100 0.000038 0.000024 0.000024 0.000036 0.000022 0.000022
120 0.000014 0.000008 0.000008 0.000013 0.000007 0.000007
150 0.000004 0.000002 0.000002 0.000003 0.000001 0.000001
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 8.57143 8.57143 8.57143 8.57143 8.57143 8.57143
$ V(N) $ 97.7843 83.0030 83.5942 96.0350 81.2536 81.8449
Geometric batch size
$ p=0.8 $, $ q=0.2 $, $ m=3 $, $ \rho=0.65 $
Arbitrary batch size
$ g_1=0.7 $, $ g_2=0.3 $, $ m=3 $, $ \rho=0.65 $
$ n $ Exp Er GEr Exp Er GEr
3 0.284754 0.249906 0.251187 0.296296 0.262144 0.263406
4 0.153814 0.155912 0.155949 0.138271 0.140929 0.140925
5 0.103324 0.108806 0.108638 0.104033 0.108104 0.107992
6 0.074714 0.080158 0.079956 0.074246 0.079344 0.079161
7 0.056661 0.061381 0.061192 0.057051 0.061597 0.061419
8 0.04445 0.048385 0.048220 0.044842 0.048768 0.048605
9 0.035768 0.039006 0.038866 0.036193 0.039482 0.039341
10 0.029358 0.032012 0.031895 0.029750 0.032485 0.032365
50 0.000625 0.000544 0.000547 0.000618 0.000532 0.000536
100 0.000038 0.000024 0.000024 0.000036 0.000022 0.000022
120 0.000014 0.000008 0.000008 0.000013 0.000007 0.000007
150 0.000004 0.000002 0.000002 0.000003 0.000001 0.000001
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 8.57143 8.57143 8.57143 8.57143 8.57143 8.57143
$ V(N) $ 97.7843 83.0030 83.5942 96.0350 81.2536 81.8449
Table 3.  Hyperexponential (H), Coxian (Cox), IPP service-time distributions
Geometric batch size
$ p=0.8 $, $ q=0.2 $, $ \rho=0.48 $
Arbitrary batch size
$ g_1=0.7 $, $ g_2=0.3 $, $ \rho=0.65 $
$ n $ H Cox IPP H Cox IPP
1 0.727986 0.715778 0.761631 0.673993 0.662037 0.720000
2 0.112936 0.119996 0.092479 0.101235 0.105492 0.082253
3 0.052525 0.055582 0.044531 0.060451 0.062843 0.050677
4 0.030003 0.031571 0.026147 0.034555 0.036224 0.028685
5 0.019157 0.020011 0.017118 0.023752 0.024893 0.020004
6 0.013102 0.013572 0.011986 0.017131 0.017951 0.014566
7 0.009387 0.009637 0.008783 0.013022 0.013625 0.011193
8 0.006955 0.007074 0.006651 0.010219 0.010672 0.008873
9 0.005285 0.005324 0.005164 0.008230 0.008575 0.007217
10 0.004097 0.004087 0.004088 0.006760 0.007025 0.005985
50 0.000009 0.000006 0.000020 0.000151 0.000137 0.000190
100 0.000000 0.000000 0.000000 0.000009 0.000007 0.000019
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 1.92308 1.92308 1.92308 2.85714 2.85714 2.85714
$ V(N) $ 7.06645 6.4406 8.94401 33.85932 31.03417 45.15063
Geometric batch size
$ p=0.8 $, $ q=0.2 $, $ \rho=0.48 $
Arbitrary batch size
$ g_1=0.7 $, $ g_2=0.3 $, $ \rho=0.65 $
$ n $ H Cox IPP H Cox IPP
1 0.727986 0.715778 0.761631 0.673993 0.662037 0.720000
2 0.112936 0.119996 0.092479 0.101235 0.105492 0.082253
3 0.052525 0.055582 0.044531 0.060451 0.062843 0.050677
4 0.030003 0.031571 0.026147 0.034555 0.036224 0.028685
5 0.019157 0.020011 0.017118 0.023752 0.024893 0.020004
6 0.013102 0.013572 0.011986 0.017131 0.017951 0.014566
7 0.009387 0.009637 0.008783 0.013022 0.013625 0.011193
8 0.006955 0.007074 0.006651 0.010219 0.010672 0.008873
9 0.005285 0.005324 0.005164 0.008230 0.008575 0.007217
10 0.004097 0.004087 0.004088 0.006760 0.007025 0.005985
50 0.000009 0.000006 0.000020 0.000151 0.000137 0.000190
100 0.000000 0.000000 0.000000 0.000009 0.000007 0.000019
$\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
$ E(N) $ 1.92308 1.92308 1.92308 2.85714 2.85714 2.85714
$ V(N) $ 7.06645 6.4406 8.94401 33.85932 31.03417 45.15063
[1]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[2]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[3]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[4]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[5]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[6]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[7]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial and Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[8]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[9]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[10]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[11]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[12]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[13]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[14]

William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020

[15]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[16]

Linghai Kong, Suhua Wei. A variational method for Abel inversion tomography with mixed Poisson-Laplace-Gaussian noise. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022007

[17]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[18]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047

[19]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[20]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (297)
  • HTML views (302)
  • Cited by (0)

Other articles
by authors

[Back to Top]