[1]
|
A. M. Bagirov, A. Al Nuaimat and N. Sultanova, Hyperbolic smoothing function method for minimax problems, Optimization, 62 (2013), 759-782.
doi: 10.1080/02331934.2012.675335.
|
[2]
|
A. M. Bagirov, B. Ordin, G. Ozturk and A. E. Xavier, An incremental clustering algorithm based on hyperbolic smoothing, Comput. Optim. Appl., 61 (2015), 219-241.
doi: 10.1007/s10589-014-9711-7.
|
[3]
|
A. M. Bagirov, N. Sultanova, A. Al Nuaimat and S. Taheri, Solving minimax problems: Local smoothing versus global smoothing, Numerical Analysis and Optimization, Springer Proceedings in Mathematics an Statistic, 235 (2018), 23-43.
doi: 10.1007/978-3-319-90026-1_2.
|
[4]
|
D. P. Bertsekas, Nondifferentiable optimization via approximation, Math. Programming Stud., 3 (1975), 1-25.
doi: 10.1007/BFb0120696.
|
[5]
|
W. Bian and X. Chen, Smoothing neural network for constrained non-Lipschitz optimization with applications, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 399-411.
doi: 10.1109/TNNLS.2011.2181867.
|
[6]
|
W. Bian and X. Chen, Linearly constrained non-Lipschitz optimization for image restoration, SIAM J. Imaging Sci., 8 (2015), 2294-2322.
doi: 10.1137/140985639.
|
[7]
|
L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45-58.
doi: 10.1007/s10589-009-9242-9.
|
[8]
|
X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Prog. Ser. B., 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0.
|
[9]
|
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim. Appl., 5 (1996), 97-138.
doi: 10.1007/BF00249052.
|
[10]
|
X. Chen, M. K. Ng and C. Zhang, Non-Lipschitz $\ell_{p}$-regularization and box constrained model for image restoration, IEEE Trans. Image Process., 21 (2012), 4709-4721.
doi: 10.1109/TIP.2012.2214051.
|
[11]
|
X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM J. Imaging Sciences, 3 (2010), 765-790.
doi: 10.1137/080740167.
|
[12]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
doi: 10.1137/1.9781611971309.
|
[13]
|
C. Grossmann, Smoothing techniques for exact penalty methods, Contemporary Mathematics, In book Panaroma of Mathematics: Pure and Applied, 658 (2016), 249-265.
|
[14]
|
Y. Huang, H. Liu and W. Cong, A note on the smoothing quadratic regularization method for non-Lipschitz optimization, Numer. Algor., 69 (2015), 863-874.
doi: 10.1007/s11075-014-9929-6.
|
[15]
|
X. Jiang and Y. Zhang, A smoothing-type algorithm for absolute value equations, J. Ind. Manag. Optim., 9 (2013), 789-798.
doi: 10.3934/jimo.2013.9.789.
|
[16]
|
M. Kang and M. Jung, Simultaneous image enhancement and restoration with non-convex total variation, J. Sci. Comput., 87 (2021), Paper No. 83, 46 pp.
doi: 10.1007/s10915-021-01488-x.
|
[17]
|
K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985.
doi: 10.1007/BFb0074500.
|
[18]
|
G. Landi, A modified Newton projection method for $\ell_1$-regularized least squares image deblurring, J. Math. Imaging Vis., 51 (2015), 195-208.
doi: 10.1007/s10851-014-0514-3.
|
[19]
|
S.-J. Lian, Smoothing approximation to $l_1$ exact penalty function for inequality constrained optimization, Appl. Math. Comput., 219 (2012), 3113-3121.
doi: 10.1016/j.amc.2012.09.042.
|
[20]
|
M. M. Mäkelä and P. Neitaanmäki, Nonsmooth Optimization, World Scientific, Singapore, 1992.
doi: 10.1142/1493.
|
[21]
|
N. Mau Nam, L. T. H. An, D. Giles and N. Thai An, Smoothing techniques and difference of convex functions algorithms for image reconstructions, Optimization, 69 (2020), 1601-1633.
doi: 10.1080/02331934.2019.1648467.
|
[22]
|
Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5.
|
[23]
|
M. Nikolova, Minimizers of cost functions involving nonsmooth data-fidelity terms. Application to the processing outliers, SIAM J. Numer. Anal., 40 (2002), 965-994.
doi: 10.1137/S0036142901389165.
|
[24]
|
M. Nikolova, M. K. Ng, S. Zheng and W. K. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 1 (2008), 2-25.
doi: 10.1137/070692285.
|
[25]
|
O. N. Onak, Y. Serinagaoglu-Dogrusoz and G.-W. Weber, Effects of a priori parameter selection in minimum relative entropy method on inverse electrocardiography problem, Inverse Probl. Sci. Eng., 26 (2018), 877-897.
doi: 10.1080/17415977.2017.1369979.
|
[26]
|
C. T. Pham, G. Gamard, A. Kopylov and T. T. T. Tran, An algorithm for image restoration with mixed noise using total variation regularization, Turk. J. Elec. Eng. Comp. Sci., 26 (2018), 2831-2845.
doi: 10.3906/elk-1803-100.
|
[27]
|
C. T. Pham, T. T. T. Tran and G. Gamard, An efficient total variation minimization method for image restoration, Informatica, 31 (2020), 539-560.
doi: 10.15388/20-INFOR407.
|
[28]
|
R. A. Polyak, Smooth optimization methods for minimax problems, SIAM J. Control Optim., 26 (1988), 1274-1286.
doi: 10.1137/0326071.
|
[29]
|
L. Qi and D. Sun, Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl., 113 (2002), 121-147.
doi: 10.1023/A:1014861331301.
|
[30]
|
R. T. Rockefellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3.
|
[31]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[32]
|
B. Saheya, C.-H. Yu and J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equations, J. Appl. Math. Comput., 56 (2018), 131-149.
doi: 10.1007/s12190-016-1065-0.
|
[33]
|
A. Sahiner, G. Kapusuz and N. Yilmaz, A new smoothing approach to exact penalty functions for inequality constrained optimization problems, Numer. Algebra Contol Optim., 6 (2016), 161-173.
doi: 10.3934/naco.2016006.
|
[34]
|
M. Souza, A. E. Xavier, C. Lavor and N. Maculan, Hyperbolic smoothing and penalty techniques applied to molecular structure determination, Oper. Res. Lett., 39 (2011), 461-465.
doi: 10.1016/j.orl.2011.07.007.
|
[35]
|
P. Taylan, G.-W. Weber and F. Yerlikaya-Ozkurt, A new approach to multivariate adaptive regression splines by using Tikhonov regularization and continuous optimization, TOP, 18 (2010), 377-395.
doi: 10.1007/s11750-010-0155-7.
|
[36]
|
A. H. Tor, Hyperbolic smoothing method for sum-max problems, Neural, Parallel Sci. Comput., 24 (2016), 381-391.
|
[37]
|
S. Voronin, G. Ozkaya and D. Yoshida, Convolution based smooth approximations to the absolute value function with application to non-smooth regularization, Preprint, (2015). arXiv: 1408.6795.
|
[38]
|
C. Wu, J. Zhan, Y. Lu and J.-S. Chen, Signal reconstruction by conjugate gradient algorithm based on smoothing $l_1$-norm, Calcolo, 56 (2019), Paper No. 42, 26 pp.
doi: 10.1007/s10092-019-0340-5.
|
[39]
|
A. E. Xavier, Penalizacao Hiperbolica, I Congresso Latino-Americano de Pesquisa Operacional e Engenharia de Sistemas, 8 a 11 de Novembro, Rio de Janeiro, Brasil, 1982.
|
[40]
|
A. E. Xavier, The hyperbolic smoothing clustering method, Patt. Recog., 43 (2010), 731-737.
doi: 10.1016/j.patcog.2009.06.018.
|
[41]
|
A. E. Xavier and A. A. F. de Oliveira, Optimal covering of plane domains by circles via hyperbolic smoothing, J. Global Optim., 31 (2005), 493-504.
doi: 10.1007/s10898-004-0737-8.
|
[42]
|
A. E. Xavier and V. L. Xavier, Solving the minimum sum-of-squares clustering problem by hyperbolic smoothing and partition into boundary and gravitational regions, Patt. Recog., 44 (2011), 70-77.
doi: 10.1016/j.patcog.2010.07.004.
|
[43]
|
V. L. Xavier and A. E. Xavier, Accelerated hyperbolic smoothing method for solving the multisource Fermat-Weber and k-Median problems, Knowl. Based Syst., 191 (2020), 105226.
doi: 10.1016/j.knosys.2019.105226.
|
[44]
|
N. Yilmaz and A. Sahiner, On a new smoothing technique for non-smooth, non-convex optimization, Numer. Algebra Contol Optim., 10 (2020), 317-330.
doi: 10.3934/naco.2020004.
|
[45]
|
H. Yin, An adaptive smoothing method for continuous minimax problems, Asia-Pac. J. Oper. Res., 32 (2015), 1540001, 19 pp.
doi: 10.1142/S0217595915400011.
|
[46]
|
L. Yuan, C. Fei, Z. Wan, W. Li and W. Wang, A nonmonotone smoothing Newton method for system of nonlinear inequalities based on a new smoothing function, Comput. Appl. Math., 38 (2019), Paper No. 91, 11 pp.
doi: 10.1007/s40314-019-0856-y.
|
[47]
|
I. Zang, A smoothing out technique for min-max optimization, Math. Programm., 19 (1980), 61-77.
doi: 10.1007/BF01581628.
|