
-
Previous Article
Outsourcing contract design for the green transformation of manufacturing systems under asymmetric information
- JIMO Home
- This Issue
-
Next Article
Optimal investment-reinsurance strategy in the correlated insurance and financial markets
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Penalized NCP-functions for nonlinear complementarity problems and a scaling algorithm
1. | School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China |
2. | College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China |
In this paper, we systematically study the properties of penalized NCP-functions in derivative-free algorithms for nonlinear complementarity problems (NCPs), and give some regular conditions for stationary points of penalized NCP-functions to be solutions of NCPs. The main contribution is to unify and generalize previous results. Based on one of above penalized NCP-functions, we analyze a scaling algorithm for NCPs. The numerical results show that the scaling can greatly improve the effectiveness of the algorithm.
References:
[1] |
B. Chen, X. Chen and C. Kanzow,
A penalized Fischer-Burmeister NCP-function, Math. Programm., 88 (2000), 211-216.
doi: 10.1007/PL00011375. |
[2] |
J.-S. Chen, H.-T. Gao and S. Pan,
An $R$-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function, J. Comput. Appl. Math., 232 (2009), 455-471.
doi: 10.1016/j.cam.2009.06.022. |
[3] |
J.-S. Chen, Z.-H. Huang and C.-Y. She,
A new class of penalized NCP-functions and its properties, Comput. Optim. Appl., 50 (2001), 49-73.
doi: 10.1007/s10589-009-9315-9. |
[4] |
J.-S. Chen and S. Pan,
A family of NCP functions and a descent method for the nonlinear complementarity problem, Comput. Optim. Appl., 40 (2008), 389-404.
doi: 10.1007/s10589-007-9086-0. |
[5] |
X. Chi, M. Gowda and J. Tao,
The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra, J. Glob. Optim., 73 (2019), 153-169.
doi: 10.1007/s10898-018-0689-z. |
[6] |
X. Chi, Y. Wang, Z. Zhu and Z. Wan,
Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for SOCCP, Comput. Appl. Math., 37 (2018), 439-455.
doi: 10.1007/s40314-016-0352-6. |
[7] |
X. Chi, Z. Wan, Z. Zhu and L. Yuan,
A nonmonotone smoothing Newton method for circular cone programming, Optim., 65 (2016), 2227-2250.
doi: 10.1080/02331934.2016.1217861. |
[8] |
T. De Luca, F. Facchinei and C. Kanzow,
A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Programm., 75 (1996), 407-439.
doi: 10.1007/BF02592192. |
[9] |
S. P. Dirkse and M. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[10] |
M. C. Ferris and J. S. Pang,
Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669-713.
doi: 10.1137/S0036144595285963. |
[11] |
C. Geiger and C. Kanzow,
On the resolution of monotone complementarity problems, Comput. Optim. Appl., 5 (1996), 155-173.
doi: 10.1007/BF00249054. |
[12] |
L. Grippo, F. Lampariello and S. Ludidi,
A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal., 23 (1986), 707-716.
doi: 10.1137/0723046. |
[13] |
C. Gu, D. Zhu and Y. Pei,
A new inexact SQP algorithm for nonlinear systems of mixed equalities and inequalities, Numer. Algor., 78 (2018), 1233-1253.
doi: 10.1007/s11075-017-0421-y. |
[14] |
W.-Z. Gu and L.-Y. Lu,
The linear convergence of a derivative-free descent method for nonlinear complementarity problems, J. Indust. Manag. Optim., 13 (2017), 531-548.
doi: 10.3934/jimo.2016030. |
[15] |
Z. Hao, Z. Wan and X. Chi,
A power penalty method for second-order cone nonlinear complementarity problems, J. Comput. Appl. Math., 290 (2015), 136-149.
doi: 10.1016/j.cam.2015.05.007. |
[16] |
P. T. Harker and J.-S. Pang,
Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programm., 48 (1990), 161-220.
doi: 10.1007/BF01582255. |
[17] |
S.-L. Hu, Z.-H. Huang and J.-S. Chen,
Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J. Comput. Appl. Math., 230 (2009), 69-82.
doi: 10.1016/j.cam.2008.10.056. |
[18] |
C. Huang and S. Wang,
A penalty method for a mixed nonlinear complementarity problem, Nonlinear Anal. Theory Methods Appl., 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061. |
[19] |
C. Huang and S. Wang,
A power penalty approach to a nonlinear complementarity problem, Oper. Res. Lett., 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009. |
[20] |
C.-H. Huang, K.-J. Weng, J.-S. Chen, H.-W. Chu and M.-Y. Li,
On four discrete-type families of NCP-functions, J. Nonlinear Convex Anal., 20 (2019), 283-306.
|
[21] |
C. Kanzow and H. Kleinmichel,
A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl., 11 (1998), 227-251.
doi: 10.1023/A:1026424918464. |
[22] |
P.-F. Ma, J.-S. Chen, C.-H. Huang and C.-H. Ko,
Discovery of new complementarity functions for NCP and SOCCP, Comput. Appl. Math., 37 (2018), 5727-5749.
doi: 10.1007/s40314-018-0660-0. |
[23] |
J.-S. Pang, Complementarity problems, Handbook of Global Optimization, 271–338, Nonconvex Optim. Appl., 2, Kluwer Acad. Publ., Dordrecht, (1995).
doi: 10.1007/978-1-4615-2025-2_6. |
[24] |
J. M. Peng,
Derivative-free methods for monotone variational inequality and complementarity problems, J. Optim. Theory Appl., 99 (1998), 235-252.
doi: 10.1023/A:1021712513685. |
[25] |
K. Su and D. Yang,
A smooth Newton method with 3-1 piecewise NCP function for generalized nonlinear complementarity problem, Int. J. Comput. Math., 95 (2018), 1703-1713.
doi: 10.1080/00207160.2017.1329531. |
[26] |
S. Wang and C.-S. Huang,
A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Anal. Theory Methods Appl., 69 (2008), 1125-1137.
doi: 10.1016/j.na.2007.06.014. |
[27] |
S. Wang and X. Yang,
A power penalty method for a bounded nonlinear complementarity problem, Optim., 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236. |
[28] |
S. Wang and X. Yang,
A power penalty method for linear complementarity problems, Oper. Res. Lett., 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006. |
[29] |
S. Wang, X. Q. Yang and K. L. Teo,
Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3. |
[30] |
S. Wang and K. Zhang,
An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering, Optim. Lett., 12 (2018), 1161-1178.
doi: 10.1007/s11590-016-1050-4. |
[31] |
K. Yamada, N. Yamashita and M. Fukushima, A new derivative-free descent method for the nonlinear complementarity problems, in: G.D. Pillo, F. Giannessi (Eds.), Nonlinear Optimization and Related Topics, Kluwer Academic Publishers, Netherlands, (2000), 463–487.
doi: 10.1007/978-1-4757-3226-9_25. |
[32] |
K. Zhang and S. Wang,
Convergence property of an interior penalty approach to pricing American option, J. Indust. Manag. Optim., 7 (2011), 435-447.
doi: 10.3934/jimo.2011.7.435. |
[33] |
J. Zhu, H. Liu, C. Liu and W. Cong,
A nonmonotone derivative-free algorithmfor nonlinear complementarity problems based on the new generalized penalized Fischer-Burmeister merit function, Numer. Algor., 58 (2011), 573-591.
doi: 10.1007/s11075-011-9471-8. |
show all references
References:
[1] |
B. Chen, X. Chen and C. Kanzow,
A penalized Fischer-Burmeister NCP-function, Math. Programm., 88 (2000), 211-216.
doi: 10.1007/PL00011375. |
[2] |
J.-S. Chen, H.-T. Gao and S. Pan,
An $R$-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function, J. Comput. Appl. Math., 232 (2009), 455-471.
doi: 10.1016/j.cam.2009.06.022. |
[3] |
J.-S. Chen, Z.-H. Huang and C.-Y. She,
A new class of penalized NCP-functions and its properties, Comput. Optim. Appl., 50 (2001), 49-73.
doi: 10.1007/s10589-009-9315-9. |
[4] |
J.-S. Chen and S. Pan,
A family of NCP functions and a descent method for the nonlinear complementarity problem, Comput. Optim. Appl., 40 (2008), 389-404.
doi: 10.1007/s10589-007-9086-0. |
[5] |
X. Chi, M. Gowda and J. Tao,
The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra, J. Glob. Optim., 73 (2019), 153-169.
doi: 10.1007/s10898-018-0689-z. |
[6] |
X. Chi, Y. Wang, Z. Zhu and Z. Wan,
Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for SOCCP, Comput. Appl. Math., 37 (2018), 439-455.
doi: 10.1007/s40314-016-0352-6. |
[7] |
X. Chi, Z. Wan, Z. Zhu and L. Yuan,
A nonmonotone smoothing Newton method for circular cone programming, Optim., 65 (2016), 2227-2250.
doi: 10.1080/02331934.2016.1217861. |
[8] |
T. De Luca, F. Facchinei and C. Kanzow,
A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Programm., 75 (1996), 407-439.
doi: 10.1007/BF02592192. |
[9] |
S. P. Dirkse and M. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[10] |
M. C. Ferris and J. S. Pang,
Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669-713.
doi: 10.1137/S0036144595285963. |
[11] |
C. Geiger and C. Kanzow,
On the resolution of monotone complementarity problems, Comput. Optim. Appl., 5 (1996), 155-173.
doi: 10.1007/BF00249054. |
[12] |
L. Grippo, F. Lampariello and S. Ludidi,
A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal., 23 (1986), 707-716.
doi: 10.1137/0723046. |
[13] |
C. Gu, D. Zhu and Y. Pei,
A new inexact SQP algorithm for nonlinear systems of mixed equalities and inequalities, Numer. Algor., 78 (2018), 1233-1253.
doi: 10.1007/s11075-017-0421-y. |
[14] |
W.-Z. Gu and L.-Y. Lu,
The linear convergence of a derivative-free descent method for nonlinear complementarity problems, J. Indust. Manag. Optim., 13 (2017), 531-548.
doi: 10.3934/jimo.2016030. |
[15] |
Z. Hao, Z. Wan and X. Chi,
A power penalty method for second-order cone nonlinear complementarity problems, J. Comput. Appl. Math., 290 (2015), 136-149.
doi: 10.1016/j.cam.2015.05.007. |
[16] |
P. T. Harker and J.-S. Pang,
Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programm., 48 (1990), 161-220.
doi: 10.1007/BF01582255. |
[17] |
S.-L. Hu, Z.-H. Huang and J.-S. Chen,
Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J. Comput. Appl. Math., 230 (2009), 69-82.
doi: 10.1016/j.cam.2008.10.056. |
[18] |
C. Huang and S. Wang,
A penalty method for a mixed nonlinear complementarity problem, Nonlinear Anal. Theory Methods Appl., 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061. |
[19] |
C. Huang and S. Wang,
A power penalty approach to a nonlinear complementarity problem, Oper. Res. Lett., 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009. |
[20] |
C.-H. Huang, K.-J. Weng, J.-S. Chen, H.-W. Chu and M.-Y. Li,
On four discrete-type families of NCP-functions, J. Nonlinear Convex Anal., 20 (2019), 283-306.
|
[21] |
C. Kanzow and H. Kleinmichel,
A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl., 11 (1998), 227-251.
doi: 10.1023/A:1026424918464. |
[22] |
P.-F. Ma, J.-S. Chen, C.-H. Huang and C.-H. Ko,
Discovery of new complementarity functions for NCP and SOCCP, Comput. Appl. Math., 37 (2018), 5727-5749.
doi: 10.1007/s40314-018-0660-0. |
[23] |
J.-S. Pang, Complementarity problems, Handbook of Global Optimization, 271–338, Nonconvex Optim. Appl., 2, Kluwer Acad. Publ., Dordrecht, (1995).
doi: 10.1007/978-1-4615-2025-2_6. |
[24] |
J. M. Peng,
Derivative-free methods for monotone variational inequality and complementarity problems, J. Optim. Theory Appl., 99 (1998), 235-252.
doi: 10.1023/A:1021712513685. |
[25] |
K. Su and D. Yang,
A smooth Newton method with 3-1 piecewise NCP function for generalized nonlinear complementarity problem, Int. J. Comput. Math., 95 (2018), 1703-1713.
doi: 10.1080/00207160.2017.1329531. |
[26] |
S. Wang and C.-S. Huang,
A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Anal. Theory Methods Appl., 69 (2008), 1125-1137.
doi: 10.1016/j.na.2007.06.014. |
[27] |
S. Wang and X. Yang,
A power penalty method for a bounded nonlinear complementarity problem, Optim., 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236. |
[28] |
S. Wang and X. Yang,
A power penalty method for linear complementarity problems, Oper. Res. Lett., 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006. |
[29] |
S. Wang, X. Q. Yang and K. L. Teo,
Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3. |
[30] |
S. Wang and K. Zhang,
An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering, Optim. Lett., 12 (2018), 1161-1178.
doi: 10.1007/s11590-016-1050-4. |
[31] |
K. Yamada, N. Yamashita and M. Fukushima, A new derivative-free descent method for the nonlinear complementarity problems, in: G.D. Pillo, F. Giannessi (Eds.), Nonlinear Optimization and Related Topics, Kluwer Academic Publishers, Netherlands, (2000), 463–487.
doi: 10.1007/978-1-4757-3226-9_25. |
[32] |
K. Zhang and S. Wang,
Convergence property of an interior penalty approach to pricing American option, J. Indust. Manag. Optim., 7 (2011), 435-447.
doi: 10.3934/jimo.2011.7.435. |
[33] |
J. Zhu, H. Liu, C. Liu and W. Cong,
A nonmonotone derivative-free algorithmfor nonlinear complementarity problems based on the new generalized penalized Fischer-Burmeister merit function, Numer. Algor., 58 (2011), 573-591.
doi: 10.1007/s11075-011-9471-8. |










Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | 8266 | 24367 | 2.3812e-009 | 12160 | 12170 | 4.9639e-007 | 27 |
bertsekas(2) | 7891 | 20336 | 9.9677e-007 | 11695 | 11702 | 9.1309e-007 | 26 |
bertsekas(3) | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | 17306 | 55349 | 5.5376e-009 | 14 |
colvdual(2) | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | 4577 | 7154 | 5.6383e-009 | 30 |
cycle | 10 | 11 | 3.0849e-009 | 10 | 11 | 3.0849e-009 | 1 |
explcp | 75 | 90 | 1.4837e-007 | 75 | 90 | 1.4837e-007 | 1 |
gafni(1) | 34569 | 121975 | 9.1296e-008 | 112 | 157 | 7.5602e-007 | 15 |
gafni(2) | 47404 | 167978 | 1.0529e-007 | 73 | 102 | 4.0892e-007 | 8 |
gafni(3) | 51991 | 184361 | 1.0342e-007 | 118 | 165 | 5.0671e-007 | 12 |
hanskoop(1) | - | - | - | - | - | - | - |
hanskoop(2) | - | - | - | - | - | - | - |
hanskoop(3) | - | - | - | 555 | 556 | 9.9791e-007 | 18 |
hanskoop(4) | - | - | - | - | - | - | - |
josephy(1) | 97 | 176 | 1.3794e-007 | 80 | 82 | 5.2841e-007 | 3 |
josephy(2) | 266 | 443 | 8.8353e-008 | 59 | 62 | 3.7396e-008 | 2 |
josephy(3) | 1541 | 3081 | 2.4551e-008 | 290 | 466 | 6.2118e-007 | 5 |
josephy(4) | 789 | 1580 | 1.3789e-008 | 32 | 35 | 3.1777e-007 | 2 |
josephy(5) | 253 | 426 | 8.8353e-008 | 29 | 31 | 3.4038e-007 | 3 |
josephy(6) | 1241 | 2484 | 2.4521e-008 | 73 | 90 | 9.4225e-007 | 2 |
kojshin(1) | 1125 | 2250 | 2.6963e-008 | 64 | 74 | 1.8273e-009 | 2 |
kojshin(2) | - | - | - | - | - | - | - |
kojshin(3) | - | - | - | 363 | 584 | 3.0811e-007 | 7 |
kojshin(4) | 193 | 331 | 2.5809e-008 | 51 | 54 | 1.8472e-009 | 2 |
kojshin(5) | 1012 | 2026 | 2.6726e-008 | 101 | 103 | 4.1455e-007 | 4 |
kojshin(6) | 215 | 431 | 7.5751e-010 | 49 | 51 | 2.7706e-008 | 7 |
mathinum(1) | - | - | - | - | - | - | - |
mathinum(2) | 122 | 130 | 2.1945e-008 | 122 | 130 | 2.1945e-008 | 1 |
mathinum(3) | - | - | - | 557 | 600 | 3.3811e-008 | 8 |
mathinum(4) | - | - | - | - | - | - | - |
mathisum(1) | 872 | 1716 | 1.1988e-007 | 379 | 404 | 6.0656e-007 | 5 |
mathisum(2) | 266 | 512 | 4.1344e-007 | 339 | 400 | 9.4181e-007 | 4 |
mathisum(3) | - | - | - | 303 | 388 | 7.7901e-007 | 3 |
mathisum(4) | - | - | - | 340 | 386 | 7.6970e-007 | 4 |
nash(1) | 130 | 346 | 5.8724e-007 | 52 | 62 | 7.3456e-007 | 16 |
nash(2) | 500000 | 2426781 | 9.4354e-004 | 57 | 64 | 9.9217e-007 | 16 |
sppe(1) | 26463 | 122854 | 9.7144e-007 | 2491 | 2591 | 8.6671e-007 | 22 |
sppe(2) | 23832 | 105901 | 4.9202e-007 | 2431 | 2528 | 9.3475e-007 | 22 |
tobin(1) | 1510 | 3393 | 6.8669e-007 | 484 | 491 | 2.8497e-009 | 10 |
tobin(2) | 1836 | 4126 | 7.5978e-007 | 543 | 549 | 6.4011e-008 | 10 |
Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | 8266 | 24367 | 2.3812e-009 | 12160 | 12170 | 4.9639e-007 | 27 |
bertsekas(2) | 7891 | 20336 | 9.9677e-007 | 11695 | 11702 | 9.1309e-007 | 26 |
bertsekas(3) | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | 17306 | 55349 | 5.5376e-009 | 14 |
colvdual(2) | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | 4577 | 7154 | 5.6383e-009 | 30 |
cycle | 10 | 11 | 3.0849e-009 | 10 | 11 | 3.0849e-009 | 1 |
explcp | 75 | 90 | 1.4837e-007 | 75 | 90 | 1.4837e-007 | 1 |
gafni(1) | 34569 | 121975 | 9.1296e-008 | 112 | 157 | 7.5602e-007 | 15 |
gafni(2) | 47404 | 167978 | 1.0529e-007 | 73 | 102 | 4.0892e-007 | 8 |
gafni(3) | 51991 | 184361 | 1.0342e-007 | 118 | 165 | 5.0671e-007 | 12 |
hanskoop(1) | - | - | - | - | - | - | - |
hanskoop(2) | - | - | - | - | - | - | - |
hanskoop(3) | - | - | - | 555 | 556 | 9.9791e-007 | 18 |
hanskoop(4) | - | - | - | - | - | - | - |
josephy(1) | 97 | 176 | 1.3794e-007 | 80 | 82 | 5.2841e-007 | 3 |
josephy(2) | 266 | 443 | 8.8353e-008 | 59 | 62 | 3.7396e-008 | 2 |
josephy(3) | 1541 | 3081 | 2.4551e-008 | 290 | 466 | 6.2118e-007 | 5 |
josephy(4) | 789 | 1580 | 1.3789e-008 | 32 | 35 | 3.1777e-007 | 2 |
josephy(5) | 253 | 426 | 8.8353e-008 | 29 | 31 | 3.4038e-007 | 3 |
josephy(6) | 1241 | 2484 | 2.4521e-008 | 73 | 90 | 9.4225e-007 | 2 |
kojshin(1) | 1125 | 2250 | 2.6963e-008 | 64 | 74 | 1.8273e-009 | 2 |
kojshin(2) | - | - | - | - | - | - | - |
kojshin(3) | - | - | - | 363 | 584 | 3.0811e-007 | 7 |
kojshin(4) | 193 | 331 | 2.5809e-008 | 51 | 54 | 1.8472e-009 | 2 |
kojshin(5) | 1012 | 2026 | 2.6726e-008 | 101 | 103 | 4.1455e-007 | 4 |
kojshin(6) | 215 | 431 | 7.5751e-010 | 49 | 51 | 2.7706e-008 | 7 |
mathinum(1) | - | - | - | - | - | - | - |
mathinum(2) | 122 | 130 | 2.1945e-008 | 122 | 130 | 2.1945e-008 | 1 |
mathinum(3) | - | - | - | 557 | 600 | 3.3811e-008 | 8 |
mathinum(4) | - | - | - | - | - | - | - |
mathisum(1) | 872 | 1716 | 1.1988e-007 | 379 | 404 | 6.0656e-007 | 5 |
mathisum(2) | 266 | 512 | 4.1344e-007 | 339 | 400 | 9.4181e-007 | 4 |
mathisum(3) | - | - | - | 303 | 388 | 7.7901e-007 | 3 |
mathisum(4) | - | - | - | 340 | 386 | 7.6970e-007 | 4 |
nash(1) | 130 | 346 | 5.8724e-007 | 52 | 62 | 7.3456e-007 | 16 |
nash(2) | 500000 | 2426781 | 9.4354e-004 | 57 | 64 | 9.9217e-007 | 16 |
sppe(1) | 26463 | 122854 | 9.7144e-007 | 2491 | 2591 | 8.6671e-007 | 22 |
sppe(2) | 23832 | 105901 | 4.9202e-007 | 2431 | 2528 | 9.3475e-007 | 22 |
tobin(1) | 1510 | 3393 | 6.8669e-007 | 484 | 491 | 2.8497e-009 | 10 |
tobin(2) | 1836 | 4126 | 7.5978e-007 | 543 | 549 | 6.4011e-008 | 10 |
Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | 26767 | 89347 | 3.5032e-007 | 20934 | 30729 | 6.1796e-011 | 16 |
bertsekas(2) | 25115 | 83355 | 3.5032e-007 | 20864 | 30647 | 6.1708e-011 | 16 |
bertsekas(3) | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | 21590 | 67480 | 3.3568e-009 | 10 |
colvdual(2) | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | 3474 | 7716 | 3.3348e-009 | 9 |
cycle | 8 | 9 | 1.1847e-009 | 4 | 5 | 3.1656e-010 | 2 |
explcp | 26 | 46 | 2.5022e-007 | 12 | 14 | 3.0423e-007 | 3 |
gafni(1) | 25223 | 92784 | 2.0520e-008 | 51 | 84 | 3.2553e-007 | 27 |
gafni(2) | 29772 | 108923 | 3.7445e-008 | 59 | 98 | 3.0945e-007 | 27 |
gafni(3) | 24233 | 87773 | 6.3577e-007 | 38 | 63 | 7.9123e-007 | 30 |
hanskoop(1) | - | - | - | - | - | - | - |
hanskoop(2) | 379 | 1022 | 6.4234e-007 | 139 | 253 | 5.7983e-007 | 2 |
hanskoop(3) | 21 | 23 | 1.5259e-007 | 21 | 23 | 1.5259e-007 | 1 |
hanskoop(4) | 23 | 32 | 1.8634e-007 | 24 | 25 | 6.3337e-008 | 2 |
josephy(1) | 359 | 720 | 3.9772e-008 | 13 | 15 | 9.7292e-007 | 6 |
josephy(2) | 420 | 841 | 3.4525e-008 | 23 | 24 | 8.8124e-007 | 6 |
josephy(3) | 764 | 1468 | 2.2183e-007 | 328 | 590 | 9.5774e-007 | 30 |
josephy(4) | 423 | 773 | 2.2183e-007 | 26 | 28 | 1.5330e-007 | 5 |
josephy(5) | 408 | 748 | 2.2183e-007 | 14 | 16 | 9.7662e-007 | 6 |
josephy(6) | 420 | 842 | 3.4825e-008 | 19 | 21 | 1.0946e-007 | 8 |
kojshin(1) | 350 | 702 | 2.7028e-007 | 85 | 87 | 6.1427e-008 | 6 |
kojshin(2) | - | - | - | - | - | - | - |
kojshin(3) | 708 | 1412 | 2.6187e-007 | 370 | 644 | 9.5223e-007 | 26 |
kojshin(4) | 278 | 470 | 5.2362e-008 | 44 | 49 | 6.1203e-008 | 5 |
kojshin(5) | 322 | 646 | 2.6572e-007 | 112 | 113 | 5.9773e-008 | 11 |
kojshin(6) | 42 | 81 | 2.2097e-007 | 12 | 15 | 2.5547e-007 | 5 |
mathinum(1) | 173 | 292 | 9.5496e-007 | 62 | 78 | 4.9068e-007 | 3 |
mathinum(2) | 92 | 129 | 8.1284e-007 | 50 | 65 | 1.1306e-007 | 3 |
mathinum(3) | - | - | - | 60 | 84 | 5.1237e-007 | 2 |
mathinum(4) | - | - | - | 99 | 107 | 3.3206e-007 | 4 |
mathisum(1) | - | - | - | 140 | 195 | 6.6254e-008 | 4 |
mathisum(2) | - | - | - | 178 | 267 | 7.5195e-008 | 3 |
mathisum(3) | - | - | - | 234 | 252 | 7.1548e-008 | 9 |
mathisum(4) | - | - | - | 175 | 220 | 6.6787e-008 | 4 |
nash(1) | 324 | 1021 | 3.0684e-007 | 121 | 172 | 1.7734e-008 | 15 |
nash(2) | 432702 | 1796231 | 4.9703e-011 | 139 | 192 | 7.6530e-007 | 19 |
sppe(1) | 7514 | 28762 | 2.4311e-008 | 2155 | 2582 | 4.0753e-009 | 27 |
sppe(2) | 7532 | 28254 | 7.6481e-009 | 2110 | 2551 | 3.2455e-009 | 28 |
tobin(1) | 138 | 296 | 5.3730e-007 | 91 | 100 | 2.0161e-009 | 5 |
tobin(2) | 380 | 786 | 9.9524e-007 | 78 | 88 | 4.8676e-008 | 5 |
Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | 26767 | 89347 | 3.5032e-007 | 20934 | 30729 | 6.1796e-011 | 16 |
bertsekas(2) | 25115 | 83355 | 3.5032e-007 | 20864 | 30647 | 6.1708e-011 | 16 |
bertsekas(3) | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | 21590 | 67480 | 3.3568e-009 | 10 |
colvdual(2) | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | 3474 | 7716 | 3.3348e-009 | 9 |
cycle | 8 | 9 | 1.1847e-009 | 4 | 5 | 3.1656e-010 | 2 |
explcp | 26 | 46 | 2.5022e-007 | 12 | 14 | 3.0423e-007 | 3 |
gafni(1) | 25223 | 92784 | 2.0520e-008 | 51 | 84 | 3.2553e-007 | 27 |
gafni(2) | 29772 | 108923 | 3.7445e-008 | 59 | 98 | 3.0945e-007 | 27 |
gafni(3) | 24233 | 87773 | 6.3577e-007 | 38 | 63 | 7.9123e-007 | 30 |
hanskoop(1) | - | - | - | - | - | - | - |
hanskoop(2) | 379 | 1022 | 6.4234e-007 | 139 | 253 | 5.7983e-007 | 2 |
hanskoop(3) | 21 | 23 | 1.5259e-007 | 21 | 23 | 1.5259e-007 | 1 |
hanskoop(4) | 23 | 32 | 1.8634e-007 | 24 | 25 | 6.3337e-008 | 2 |
josephy(1) | 359 | 720 | 3.9772e-008 | 13 | 15 | 9.7292e-007 | 6 |
josephy(2) | 420 | 841 | 3.4525e-008 | 23 | 24 | 8.8124e-007 | 6 |
josephy(3) | 764 | 1468 | 2.2183e-007 | 328 | 590 | 9.5774e-007 | 30 |
josephy(4) | 423 | 773 | 2.2183e-007 | 26 | 28 | 1.5330e-007 | 5 |
josephy(5) | 408 | 748 | 2.2183e-007 | 14 | 16 | 9.7662e-007 | 6 |
josephy(6) | 420 | 842 | 3.4825e-008 | 19 | 21 | 1.0946e-007 | 8 |
kojshin(1) | 350 | 702 | 2.7028e-007 | 85 | 87 | 6.1427e-008 | 6 |
kojshin(2) | - | - | - | - | - | - | - |
kojshin(3) | 708 | 1412 | 2.6187e-007 | 370 | 644 | 9.5223e-007 | 26 |
kojshin(4) | 278 | 470 | 5.2362e-008 | 44 | 49 | 6.1203e-008 | 5 |
kojshin(5) | 322 | 646 | 2.6572e-007 | 112 | 113 | 5.9773e-008 | 11 |
kojshin(6) | 42 | 81 | 2.2097e-007 | 12 | 15 | 2.5547e-007 | 5 |
mathinum(1) | 173 | 292 | 9.5496e-007 | 62 | 78 | 4.9068e-007 | 3 |
mathinum(2) | 92 | 129 | 8.1284e-007 | 50 | 65 | 1.1306e-007 | 3 |
mathinum(3) | - | - | - | 60 | 84 | 5.1237e-007 | 2 |
mathinum(4) | - | - | - | 99 | 107 | 3.3206e-007 | 4 |
mathisum(1) | - | - | - | 140 | 195 | 6.6254e-008 | 4 |
mathisum(2) | - | - | - | 178 | 267 | 7.5195e-008 | 3 |
mathisum(3) | - | - | - | 234 | 252 | 7.1548e-008 | 9 |
mathisum(4) | - | - | - | 175 | 220 | 6.6787e-008 | 4 |
nash(1) | 324 | 1021 | 3.0684e-007 | 121 | 172 | 1.7734e-008 | 15 |
nash(2) | 432702 | 1796231 | 4.9703e-011 | 139 | 192 | 7.6530e-007 | 19 |
sppe(1) | 7514 | 28762 | 2.4311e-008 | 2155 | 2582 | 4.0753e-009 | 27 |
sppe(2) | 7532 | 28254 | 7.6481e-009 | 2110 | 2551 | 3.2455e-009 | 28 |
tobin(1) | 138 | 296 | 5.3730e-007 | 91 | 100 | 2.0161e-009 | 5 |
tobin(2) | 380 | 786 | 9.9524e-007 | 78 | 88 | 4.8676e-008 | 5 |
Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | - | - | - | - | - | - | - |
bertsekas(2) | - | - | - | - | - | - | - |
bertsekas(3) | - | - | - | 1384 | 2099 | 1.4364e-009 | 22 |
colvdual(1) | - | - | - | 22642 | 70980 | 3.3306e-009 | 10 |
colvdual(2) | - | - | - | 33701 | 94313 | 3.3442e-009 | 30 |
colvnlp(1) | - | - | - | 2128 | 3941 | 7.9056e-009 | 29 |
colvnlp(2) | - | - | - | 3831 | 8685 | 3.7521e-009 | 10 |
cycle | 4 | 5 | 5.2542e-019 | 4 | 5 | 5.2542e-019 | 1 |
explcp | 38 | 74 | 2.0424e-008 | 11 | 14 | 2.0714e-007 | 2 |
gafni(1) | 19223 | 67755 | 2.0788e-008 | 130 | 249 | 9.9662e-007 | 30 |
gafni(2) | 21722 | 76890 | 3.5635e-008 | 99 | 224 | 6.5953e-007 | 11 |
gafni(3) | 20366 | 72489 | 3.5055e-008 | 341 | 683 | 1.0469e-007 | 19 |
hanskoop(1) | 26 | 43 | 2.3821e-010 | 27 | 33 | 3.7916e-007 | 4 |
hanskoop(2) | 75 | 127 | 7.0665e-010 | 23 | 24 | 8.5594e-009 | 4 |
hanskoop(3) | 5 | 7 | 5.3588e-007 | 5 | 7 | 5.3588e-007 | 1 |
hanskoop(4) | 47 | 88 | 2.2551e-012 | 11 | 12 | 1.6245e-013 | 4 |
josephy(1) | 30 | 61 | 2.8350e-007 | 8 | 10 | 2.8479e-007 | 11 |
josephy(2) | 365 | 731 | 2.7223e-008 | 17 | 19 | 5.2938e-007 | 6 |
josephy(3) | 32 | 66 | 2.8351e-007 | 10 | 14 | 2.8479e-007 | 11 |
josephy(4) | 321 | 644 | 2.4569e-008 | 18 | 19 | 7.2910e-007 | 6 |
josephy(5) | 24 | 51 | 2.3684e-007 | 16 | 18 | 9.2798e-007 | 6 |
josephy(6) | 53 | 106 | 1.8162e-007 | 17 | 19 | 6.1620e-007 | 6 |
kojshin(1) | 292 | 586 | 3.1499e-007 | 67 | 69 | 5.3961e-008 | 7 |
kojshin(2) | 311 | 623 | 3.0988e-007 | 57 | 68 | 4.6426e-008 | 5 |
kojshin(3) | 294 | 591 | 3.1499e-007 | 54 | 63 | 4.7443e-008 | 5 |
kojshin(4) | - | - | - | 46 | 50 | 5.1553e-008 | 5 |
kojshin(5) | - | - | - | 119 | 120 | 6.1836e-008 | 13 |
kojshin(6) | 53 | 102 | 3.3305e-008 | 43 | 45 | 6.5165e-008 | 5 |
mathinum(1) | 75 | 125 | 8.7344e-007 | 42 | 53 | 1.6740e-007 | 3 |
mathinum(2) | 40 | 55 | 9.0882e-007 | 47 | 48 | 2.6675e-007 | 5 |
mathinum(3) | 85 | 141 | 1.0574e-007 | 40 | 41 | 9.8855e-007 | 6 |
mathinum(4) | 77 | 119 | 2.0889e-007 | 47 | 58 | 4.0341e-007 | 3 |
mathisum(1) | - | - | - | - | - | - | |
mathisum(2) | - | - | - | 424 | 578 | 7.2195e-008 | 14 |
mathisum(3) | - | - | - | 580 | 736 | 7.1810e-008 | 21 |
mathisum(4) | - | - | - | - | - | - | - |
nash(1) | 149 | 470 | 5.1348e-007 | 139 | 218 | 4.0121e-009 | 13 |
nash(2) | 24 | 48 | 1.6145e-007 | 17 | 32 | 1.1904e-016 | 2 |
sppe(1) | 10560 | 43706 | 1.5941e-008 | 2252 | 2606 | 2.5723e-009 | 29 |
sppe(2) | 7731 | 29014 | 1.4354e-008 | 2121 | 2459 | 3.1054e-009 | 29 |
tobin(1) | 343 | 701 | 1.8828e-007 | 109 | 112 | 1.2528e-009 | 6 |
tobin(2) | 343 | 695 | 9.9819e-007 | 96 | 98 | 1.0439e-007 | 8 |
Algorithm 1 ( | Algorithm 1 ( | ||||||
Problem | NIT | NF | NIT | NF | |||
bertsekas(1) | - | - | - | - | - | - | - |
bertsekas(2) | - | - | - | - | - | - | - |
bertsekas(3) | - | - | - | 1384 | 2099 | 1.4364e-009 | 22 |
colvdual(1) | - | - | - | 22642 | 70980 | 3.3306e-009 | 10 |
colvdual(2) | - | - | - | 33701 | 94313 | 3.3442e-009 | 30 |
colvnlp(1) | - | - | - | 2128 | 3941 | 7.9056e-009 | 29 |
colvnlp(2) | - | - | - | 3831 | 8685 | 3.7521e-009 | 10 |
cycle | 4 | 5 | 5.2542e-019 | 4 | 5 | 5.2542e-019 | 1 |
explcp | 38 | 74 | 2.0424e-008 | 11 | 14 | 2.0714e-007 | 2 |
gafni(1) | 19223 | 67755 | 2.0788e-008 | 130 | 249 | 9.9662e-007 | 30 |
gafni(2) | 21722 | 76890 | 3.5635e-008 | 99 | 224 | 6.5953e-007 | 11 |
gafni(3) | 20366 | 72489 | 3.5055e-008 | 341 | 683 | 1.0469e-007 | 19 |
hanskoop(1) | 26 | 43 | 2.3821e-010 | 27 | 33 | 3.7916e-007 | 4 |
hanskoop(2) | 75 | 127 | 7.0665e-010 | 23 | 24 | 8.5594e-009 | 4 |
hanskoop(3) | 5 | 7 | 5.3588e-007 | 5 | 7 | 5.3588e-007 | 1 |
hanskoop(4) | 47 | 88 | 2.2551e-012 | 11 | 12 | 1.6245e-013 | 4 |
josephy(1) | 30 | 61 | 2.8350e-007 | 8 | 10 | 2.8479e-007 | 11 |
josephy(2) | 365 | 731 | 2.7223e-008 | 17 | 19 | 5.2938e-007 | 6 |
josephy(3) | 32 | 66 | 2.8351e-007 | 10 | 14 | 2.8479e-007 | 11 |
josephy(4) | 321 | 644 | 2.4569e-008 | 18 | 19 | 7.2910e-007 | 6 |
josephy(5) | 24 | 51 | 2.3684e-007 | 16 | 18 | 9.2798e-007 | 6 |
josephy(6) | 53 | 106 | 1.8162e-007 | 17 | 19 | 6.1620e-007 | 6 |
kojshin(1) | 292 | 586 | 3.1499e-007 | 67 | 69 | 5.3961e-008 | 7 |
kojshin(2) | 311 | 623 | 3.0988e-007 | 57 | 68 | 4.6426e-008 | 5 |
kojshin(3) | 294 | 591 | 3.1499e-007 | 54 | 63 | 4.7443e-008 | 5 |
kojshin(4) | - | - | - | 46 | 50 | 5.1553e-008 | 5 |
kojshin(5) | - | - | - | 119 | 120 | 6.1836e-008 | 13 |
kojshin(6) | 53 | 102 | 3.3305e-008 | 43 | 45 | 6.5165e-008 | 5 |
mathinum(1) | 75 | 125 | 8.7344e-007 | 42 | 53 | 1.6740e-007 | 3 |
mathinum(2) | 40 | 55 | 9.0882e-007 | 47 | 48 | 2.6675e-007 | 5 |
mathinum(3) | 85 | 141 | 1.0574e-007 | 40 | 41 | 9.8855e-007 | 6 |
mathinum(4) | 77 | 119 | 2.0889e-007 | 47 | 58 | 4.0341e-007 | 3 |
mathisum(1) | - | - | - | - | - | - | |
mathisum(2) | - | - | - | 424 | 578 | 7.2195e-008 | 14 |
mathisum(3) | - | - | - | 580 | 736 | 7.1810e-008 | 21 |
mathisum(4) | - | - | - | - | - | - | - |
nash(1) | 149 | 470 | 5.1348e-007 | 139 | 218 | 4.0121e-009 | 13 |
nash(2) | 24 | 48 | 1.6145e-007 | 17 | 32 | 1.1904e-016 | 2 |
sppe(1) | 10560 | 43706 | 1.5941e-008 | 2252 | 2606 | 2.5723e-009 | 29 |
sppe(2) | 7731 | 29014 | 1.4354e-008 | 2121 | 2459 | 3.1054e-009 | 29 |
tobin(1) | 343 | 701 | 1.8828e-007 | 109 | 112 | 1.2528e-009 | 6 |
tobin(2) | 343 | 695 | 9.9819e-007 | 96 | 98 | 1.0439e-007 | 8 |
Problem | NIT | NF | NIT | NF | NIT | NF |
bertsekas(1) | 12125 | 41027 | 21659 | 74329 | - | - |
bertsekas(2) | - | - | 22409 | 78381 | - | - |
bertsekas(3) | - | - | - | - | - | - |
colvdual(1) | - | - | - | - | - | - |
colvdual(2) | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - |
colvnlp(2) | - | - | - | - | - | - |
cycle | 10 | 11 | 8 | 9 | 4 | 5 |
explcp | 80 | 100 | 27 | 48 | 39 | 76 |
gafni(1) | 304691 | 1207169 | 24788 | 89141 | 25304 | 91005 |
gafni(2) | 144756 | 557579 | 25562 | 91844 | 25020 | 89860 |
gafni(3) | 269424 | 1058494 | 26240 | 94133 | 25002 | 89336 |
hanskoop(1) | - | - | - | - | - | - |
hanskoop(2) | - | - | - | - | - | - |
hanskoop(3) | - | - | - | - | 5 | 7 |
hanskoop(4) | - | - | - | - | 16 | 27 |
josephy(1) | 111 | 197 | 376 | 751 | - | - |
josephy(2) | 1082 | 2160 | 420 | 841 | 365 | 731 |
josephy(3) | 1602 | 3204 | 446 | 891 | - | - |
josephy(4) | 29 | 49 | 98 | 194 | 374 | 749 |
josephy(5) | 20 | 33 | 30 | 59 | 26 | 54 |
josephy(6) | 1241 | 2484 | 420 | 842 | 51 | 102 |
kojshin(1) | - | - | 476 | 953 | 24 | 46 |
kojshin(2) | - | - | - | - | - | - |
kojshin(3) | - | - | - | - | - | - |
kojshin(4) | 22 | 31 | 35 | 68 | 18 | 35 |
kojshin(5) | 1010 | 2020 | 288 | 577 | 274 | 550 |
kojshin(6) | - | - | 46 | 91 | 48 | 96 |
mathinum(1) | - | - | 158 | 358 | 81 | 176 |
mathinum(2) | - | - | 116 | 236 | 88 | 230 |
mathinum(3) | - | - | - | - | 122 | 323 |
mathinum(4) | - | - | - | - | 101 | 237 |
mathisum(1) | - | - | - | - | - | - |
mathisum(2) | - | - | - | - | - | - |
mathisum(3) | 1372 | 2701 | - | - | - | - |
mathisum(4) | - | - | - | - | - | - |
nash(1) | 500000 | 2560023 | 250 | 502 | 73 | 149 |
nash(2) | 500000 | 2678901 | 432702 | 1796231 | 24 | 48 |
sppe(1) | 7828 | 26193 | 6076 | 22833 | 5156 | 18401 |
sppe(2) | 7887 | 26310 | 7178 | 27719 | 5081 | 18251 |
tobin(1) | 2166 | 4875 | 395 | 801 | 461 | 930 |
tobin(2) | 2524 | 5702 | 477 | 972 | 493 | 993 |
Problem | NIT | NF | NIT | NF | NIT | NF |
bertsekas(1) | 12125 | 41027 | 21659 | 74329 | - | - |
bertsekas(2) | - | - | 22409 | 78381 | - | - |
bertsekas(3) | - | - | - | - | - | - |
colvdual(1) | - | - | - | - | - | - |
colvdual(2) | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - |
colvnlp(2) | - | - | - | - | - | - |
cycle | 10 | 11 | 8 | 9 | 4 | 5 |
explcp | 80 | 100 | 27 | 48 | 39 | 76 |
gafni(1) | 304691 | 1207169 | 24788 | 89141 | 25304 | 91005 |
gafni(2) | 144756 | 557579 | 25562 | 91844 | 25020 | 89860 |
gafni(3) | 269424 | 1058494 | 26240 | 94133 | 25002 | 89336 |
hanskoop(1) | - | - | - | - | - | - |
hanskoop(2) | - | - | - | - | - | - |
hanskoop(3) | - | - | - | - | 5 | 7 |
hanskoop(4) | - | - | - | - | 16 | 27 |
josephy(1) | 111 | 197 | 376 | 751 | - | - |
josephy(2) | 1082 | 2160 | 420 | 841 | 365 | 731 |
josephy(3) | 1602 | 3204 | 446 | 891 | - | - |
josephy(4) | 29 | 49 | 98 | 194 | 374 | 749 |
josephy(5) | 20 | 33 | 30 | 59 | 26 | 54 |
josephy(6) | 1241 | 2484 | 420 | 842 | 51 | 102 |
kojshin(1) | - | - | 476 | 953 | 24 | 46 |
kojshin(2) | - | - | - | - | - | - |
kojshin(3) | - | - | - | - | - | - |
kojshin(4) | 22 | 31 | 35 | 68 | 18 | 35 |
kojshin(5) | 1010 | 2020 | 288 | 577 | 274 | 550 |
kojshin(6) | - | - | 46 | 91 | 48 | 96 |
mathinum(1) | - | - | 158 | 358 | 81 | 176 |
mathinum(2) | - | - | 116 | 236 | 88 | 230 |
mathinum(3) | - | - | - | - | 122 | 323 |
mathinum(4) | - | - | - | - | 101 | 237 |
mathisum(1) | - | - | - | - | - | - |
mathisum(2) | - | - | - | - | - | - |
mathisum(3) | 1372 | 2701 | - | - | - | - |
mathisum(4) | - | - | - | - | - | - |
nash(1) | 500000 | 2560023 | 250 | 502 | 73 | 149 |
nash(2) | 500000 | 2678901 | 432702 | 1796231 | 24 | 48 |
sppe(1) | 7828 | 26193 | 6076 | 22833 | 5156 | 18401 |
sppe(2) | 7887 | 26310 | 7178 | 27719 | 5081 | 18251 |
tobin(1) | 2166 | 4875 | 395 | 801 | 461 | 930 |
tobin(2) | 2524 | 5702 | 477 | 972 | 493 | 993 |
Problem | NIT | NF | NIT | NF | NIT | NF | NIT | NF |
bertsekas(1) | - | - | - | - | - | - | - | - |
bertsekas(2) | - | - | - | - | 26236 | 90444 | 20236 | 90444 |
bertsekas(3) | - | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | - | - | - | - | - |
colvdual(2) | - | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | - | - | - | - | - |
cycle | 4 | 5 | 4 | 5 | 4 | 5 | 4 | 5 |
explcp | 38 | 74 | 38 | 74 | 38 | 74 | 38 | 74 |
gafni(1) | - | - | 19223 | 67755 | 7250 | 25114 | 4346 | 15115 |
gafni(2) | 21722 | 76890 | 21722 | 76890 | 28597 | 104363 | 28597 | 104363 |
gafni(3) | 20366 | 72489 | 20366 | 72489 | 27454 | 100831 | 27454 | 100831 |
hanskoop(1) | - | - | 26 | 43 | 161 | 287 | 171 | 434 |
hanskoop(2) | - | - | 75 | 127 | 175 | 341 | - | - |
hanskoop(3) | 13 | 16 | 5 | 7 | 11 | 12 | 5 | 7 |
hanskoop(4) | 17 | 24 | 47 | 88 | - | - | 46 | 86 |
josephy(1) | 67 | 124 | 30 | 61 | - | - | 435 | 819 |
josephy(2) | 365 | 731 | 365 | 731 | 365 | 731 | 365 | 731 |
josephy(3) | 167 | 295 | 32 | 66 | 990 | 1820 | 523 | 985 |
josephy(4) | 36 | 71 | 321 | 644 | 872 | 1629 | 321 | 644 |
josephy(5) | 45 | 87 | 24 | 51 | 1058 | 2009 | 651 | 1225 |
josephy(6) | 53 | 106 | 53 | 106 | 513 | 967 | 513 | 967 |
kojshin(1) | 67 | 126 | 292 | 586 | 959 | 1647 | 292 | 586 |
kojshin(2) | 311 | 623 | 311 | 623 | 311 | 623 | 311 | 623 |
kojshin(3) | 138 | 237 | 294 | 591 | 1227 | 2091 | 294 | 591 |
kojshin(4) | 69 | 122 | - | - | 913 | 1552 | - | - |
kojshin(5) | 75 | 135 | - | - | 936 | 1594 | - | - |
kojshin(6) | 106 | 202 | 53 | 102 | 932 | 1604 | 913 | 1557 |
mathinum(1) | 69 | 111 | 75 | 125 | 76 | 119 | 123 | 192 |
mathinum(2) | 77 | 110 | 40 | 55 | 106 | 154 | 40 | 55 |
mathinum(3) | 116 | 199 | 85 | 141 | 259 | 457 | 128 | 203 |
mathinum(4) | 86 | 134 | 77 | 119 | 203 | 340 | 94 | 142 |
mathisum(1) | - | - | - | - | - | - | - | - |
mathisum(2) | - | - | - | - | - | - | - | - |
mathisum(3) | - | - | - | - | - | - | - | - |
mathisum(4) | - | - | - | - | - | - | - | - |
nash(1) | - | - | 149 | 470 | - | - | 1163 | 3868 |
nash(2) | 24 | 48 | 24 | 48 | 71 | 150 | 24 | 48 |
sppe(1) | 9429 | 38110 | 10560 | 43706 | 28627 | 140093 | 27303 | 130659 |
sppe(2) | 7822 | 28858 | 7731 | 29014 | 29515 | 144976 | 26991 | 129993 |
tobin(1) | 377 | 771 | 343 | 701 | 355 | 728 | 330 | 667 |
tobin(2) | 147 | 297 | 343 | 695 | 417 | 871 | 350 | 704 |
Problem | NIT | NF | NIT | NF | NIT | NF | NIT | NF |
bertsekas(1) | - | - | - | - | - | - | - | - |
bertsekas(2) | - | - | - | - | 26236 | 90444 | 20236 | 90444 |
bertsekas(3) | - | - | - | - | - | - | - | - |
colvdual(1) | - | - | - | - | - | - | - | - |
colvdual(2) | - | - | - | - | - | - | - | - |
colvnlp(1) | - | - | - | - | - | - | - | - |
colvnlp(2) | - | - | - | - | - | - | - | - |
cycle | 4 | 5 | 4 | 5 | 4 | 5 | 4 | 5 |
explcp | 38 | 74 | 38 | 74 | 38 | 74 | 38 | 74 |
gafni(1) | - | - | 19223 | 67755 | 7250 | 25114 | 4346 | 15115 |
gafni(2) | 21722 | 76890 | 21722 | 76890 | 28597 | 104363 | 28597 | 104363 |
gafni(3) | 20366 | 72489 | 20366 | 72489 | 27454 | 100831 | 27454 | 100831 |
hanskoop(1) | - | - | 26 | 43 | 161 | 287 | 171 | 434 |
hanskoop(2) | - | - | 75 | 127 | 175 | 341 | - | - |
hanskoop(3) | 13 | 16 | 5 | 7 | 11 | 12 | 5 | 7 |
hanskoop(4) | 17 | 24 | 47 | 88 | - | - | 46 | 86 |
josephy(1) | 67 | 124 | 30 | 61 | - | - | 435 | 819 |
josephy(2) | 365 | 731 | 365 | 731 | 365 | 731 | 365 | 731 |
josephy(3) | 167 | 295 | 32 | 66 | 990 | 1820 | 523 | 985 |
josephy(4) | 36 | 71 | 321 | 644 | 872 | 1629 | 321 | 644 |
josephy(5) | 45 | 87 | 24 | 51 | 1058 | 2009 | 651 | 1225 |
josephy(6) | 53 | 106 | 53 | 106 | 513 | 967 | 513 | 967 |
kojshin(1) | 67 | 126 | 292 | 586 | 959 | 1647 | 292 | 586 |
kojshin(2) | 311 | 623 | 311 | 623 | 311 | 623 | 311 | 623 |
kojshin(3) | 138 | 237 | 294 | 591 | 1227 | 2091 | 294 | 591 |
kojshin(4) | 69 | 122 | - | - | 913 | 1552 | - | - |
kojshin(5) | 75 | 135 | - | - | 936 | 1594 | - | - |
kojshin(6) | 106 | 202 | 53 | 102 | 932 | 1604 | 913 | 1557 |
mathinum(1) | 69 | 111 | 75 | 125 | 76 | 119 | 123 | 192 |
mathinum(2) | 77 | 110 | 40 | 55 | 106 | 154 | 40 | 55 |
mathinum(3) | 116 | 199 | 85 | 141 | 259 | 457 | 128 | 203 |
mathinum(4) | 86 | 134 | 77 | 119 | 203 | 340 | 94 | 142 |
mathisum(1) | - | - | - | - | - | - | - | - |
mathisum(2) | - | - | - | - | - | - | - | - |
mathisum(3) | - | - | - | - | - | - | - | - |
mathisum(4) | - | - | - | - | - | - | - | - |
nash(1) | - | - | 149 | 470 | - | - | 1163 | 3868 |
nash(2) | 24 | 48 | 24 | 48 | 71 | 150 | 24 | 48 |
sppe(1) | 9429 | 38110 | 10560 | 43706 | 28627 | 140093 | 27303 | 130659 |
sppe(2) | 7822 | 28858 | 7731 | 29014 | 29515 | 144976 | 26991 | 129993 |
tobin(1) | 377 | 771 | 343 | 701 | 355 | 728 | 330 | 667 |
tobin(2) | 147 | 297 | 343 | 695 | 417 | 871 | 350 | 704 |
[1] |
Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030 |
[2] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[3] |
Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial and Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153 |
[4] |
Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117 |
[5] |
Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911 |
[6] |
Gaohang Yu. A derivative-free method for solving large-scale nonlinear systems of equations. Journal of Industrial and Management Optimization, 2010, 6 (1) : 149-160. doi: 10.3934/jimo.2010.6.149 |
[7] |
Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71 |
[8] |
Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021125 |
[9] |
Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115 |
[10] |
A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial and Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319 |
[11] |
Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169 |
[12] |
Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103 |
[13] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[14] |
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 |
[15] |
Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial and Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569 |
[16] |
Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617 |
[17] |
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 |
[18] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[19] |
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585 |
[20] |
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]